tomorrow是我最近在用的一个爬虫利器,该模块属于第三方的模块,使用起来非常的方便,只需要用其中的threads方法作为装饰器去修饰一个普通的函数,既可以达到并发的效果,本篇将用实例来展示tomorrow的强大之处。后面文章将对tomorrow的实现原理做进一步的分析。

1.安装第三方包

pip install requests_html #网络请求包
pip install fake-useragent #获取useragent包
pip install tomorrow

2.普通下载方式

在这里我们用20个电影网址进行测试,并获取其标题,计算所用的时间

start=time.time()
for i in url_list:
print(get_xpath(get_req(i),"//title//text()"))
end=time.time()
print("普通方式花费时间",end-start)

get_req是我定义的访问网络的一个方法,get_xpath是为例使用xpath表达式获取其结果,这里是获取网址的标题。20个电影网址普通方式访问的结果在8-9秒之间。

3使用tomorrow以后

start2 = time.time()
req_list = []
for url in url_list:
req = async_get_req(url)
req_list.append(req) for req in req_list:
print(get_xpath(req, "//title//text()"))
end2 = time.time()
print("并发后花费时间", end2 - start2)

如果我们想要使用tomorrow,就要尽量减少耗时操作,访问网络并等待其回应就是一个非常耗时的工作,在这里我们需要做的是,并发的时候除了访问网络不要做其他操作,然后我们把获取的请求存一个列表,然后再去循环做其他操作,看不懂我说的没关系,直接看下面代码并尝试几次就明白了。用时为2s-3s

4.测试结果对比 来看完整代码

import time
from requests_html import HTMLSession
from fake_useragent import UserAgent as ua
from tomorrow import threads headers = {"User-Agent": ua().Chrome}
session = HTMLSession()
url_list = ["https://movie.douban.com",
"http://www.1905.com/",
"http://www.mtime.com/",
"https://www.dy2018.com/",
"http://dytt8.net",
"https://www.piaohua.com/",
"http://maoyan.com",
"https://www.xigua110.com/",
"https://www.vmovier.com/",
"http://movie.kankan.com/",
"https://107cine.com/",
"http://movie.youku.com",
"http://film.qq.com","https://dianying.taobao.com/",
"http://www.wandafilm.com/",
"http://www.dygang.net/","http://dianying.2345.com/",
] def get_req(url, timeout=10):
req = session.get(url, headers=headers, timeout=timeout)
if req.status_code == 200:
return req @threads(5)
def async_get_req(url, timeout=10):
req = session.get(url, headers=headers, timeout=timeout)
if req.status_code == 200:
return req def get_xpath(req, xpath_str):
return req.html.xpath(xpath_str)[0].strip().replace("\n", "") start=time.time()
for i in url_list:
print(get_xpath(get_req(i),"//title//text()"))
end=time.time()
print("普通方式花费时间",end-start) start2 = time.time()
req_list = []
for url in url_list:
req = async_get_req(url)
req_list.append(req) for req in req_list:
print(get_xpath(req, "//title//text()"))
end2 = time.time()
print("并发后花费时间", end2 - start2)

运行三次上面的程序记录下每次的结果

第一次:
普通方式花费时间 7.883908271789551
并发后花费时间 2.2888755798339844
第二次:
普通方式花费时间 8.522203207015991
并发后花费时间 2.4674007892608643
第三次:
普通方式花费时间 9.062756061553955
并发后花费时间 2.8703203201293945

tomorrow使用起来很简单,在普通的函数上面加个threads装饰器即可以实现并发效果, 括号中的数字是表示并发的次数,经过我的测试并不是并发次数越多越好,你需要选择一个中间点,因为还会受到网速的影响,我觉得一般并发数5-10就好.

转载自:https://www.cnblogs.com/c-x-a/p/9572326.html

python并发利器tomorrow的更多相关文章

  1. Sublime Text配置Python开发利器

    Sublime Text配置Python开发利器 收好了 自动提示 jedi 代码格式化 Python PEP8 autoformat 如果还需要在shell中搞搞研究的话,ipython将是很好的选 ...

  2. python 开发利器

    UliPad 初体验----python 开发利器 Posted on 2013-10-28 22:36 虫师 阅读(436) 评论(3) 编辑 收藏 学习python 有段时间,最近博客更新比较慢了 ...

  3. python爬虫利器Selenium使用详解

    简介: 用pyhon爬取动态页面时普通的urllib2无法实现,例如下面的京东首页,随着滚动条的下拉会加载新的内容,而urllib2就无法抓取这些内容,此时就需要今天的主角selenium. Sele ...

  4. (转)Python爬虫利器一之Requests库的用法

    官方文档 以下内容大多来自于官方文档,本文进行了一些修改和总结.要了解更多可以参考 官方文档 安装 利用 pip 安装 $ pip install requests 或者利用 easy_install ...

  5. Python并发编程__多进程

    Python并发编程_多进程 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大 ...

  6. Python并发编程的几篇文章

    Python几种并发实现方案的性能比较 http://www.elias.cn/Python/PyConcurrency?from=Develop.PyConcurrency python并发编程 h ...

  7. Python并发编程之深入理解yield from语法(八)

    大家好,并发编程 进入第八篇. 直到上一篇,我们终于迎来了Python并发编程中,最高级.最重要.当然也是最难的知识点--协程. 当你看到这一篇的时候,请确保你对生成器的知识,有一定的了解.当然不了解 ...

  8. Python并发目录

    Python并发目录 Python-socket网络编程 Python网络编程-IO阻塞与非阻塞及多路复用 Python进程-理论 Python进程-实现 Python进程间通信 Python进程池 ...

  9. Python监控服务器利器--psutil

    Python监控服务器利器--psutil 服务器的监控通过安装一些常用的监控软件之外,有时也需要运行一些shell或Python脚本:shell下可以使用系统自带的ps/free/top/df等sh ...

随机推荐

  1. C# 数据类型(3)

    动态类型 dynamic types 动态类型是后来引进的,他其实是一个static type,但是不像其他的静态类型,编译器不会检查你到底是啥类型(也不会检查你能不能去call某个'method') ...

  2. μC/OS-III---I笔记11---就绪任务列表管理

    就绪优先级为映像响表 在UCOSIII内,任务调度是要先找到优先级最高的任务,然后执行.理论上对于UCOSIII可以有无数个优先级,每个优先级又可以有无数个任务但是对于这么多的任务如何快速查到到当先就 ...

  3. 移动端 CSS 1px 问题及解决方案

    移动端 CSS 1px 问题及解决方案 viewport & transfrom: scale viewport 的 initial-scale 设为 1 UI 设计稿用rem 和 trans ...

  4. anatomy app

    anatomy app https://appolicious.com/the-best-iphone-apps-for-anatomy-students/ ios anatomy app Compl ...

  5. CSS & SASS & SCSS & less

    CSS & SASS & SCSS & less less vs scss https://github.com/vecerek/less2sass/wiki/Less-vs. ...

  6. UI & APP

    UI & APP lanhu http://help.lanhuapp.com/hc/ http://help.lanhuapp.com/hc/kb/article/1173434/ 快速使用 ...

  7. Enums & JavasScript & TypeScript

    Enums & JavasScript & TypeScript ES6 & TS https://www.typescriptlang.org/docs/handbook/e ...

  8. yapi & mock JSON

    yapi & mock JSON json, body https://hellosean1025.github.io/yapi/documents/mock.html response bo ...

  9. moment.js & convert timestamps to date string in js

    moment.js & convert timestamps to date string in js https://momentjs.com/ moment().format('YYYY- ...

  10. Dart: puppeteer库

    和node的差不多,只有写API不一样 puppeteer 地址 安装依赖 dependencies: puppeteer: ^1.7.1 下载 chrome-win 到 <project_ro ...