A. Peter and Snow Blower 解析(思維、幾何)
Codeforce 613 A. Peter and Snow Blower 解析(思維、幾何)
今天我們來看看CF613A
題目連結
題目
給你一個點\(P\)和\(n\)個點形成的多邊形(照順或逆時針順序給),求這個多邊形繞著\(P\)轉最後可以造成的面積。(有關正式的"旋轉"定義請看原題)
前言
儲存點的座標時沒想過要用\(pair<long\ long,long\ long>\),結果debug超久
想法
首先要注意到:由於題目的旋轉的定義是把每個點都對於點\(P\)去做旋轉,所以最後的圖形一定是兩個同心圓,而面積就是兩個圓中間的面積,而我們只需要維護最長的半徑和最短的半徑就好。
由於題目是按照順序給多邊形的點,所以我們可以把每條邊單獨拿出來考慮和\(P\)點的最短和最長距離。
如上圖所示,想要判斷點\(P\)到線段\(\overline{SE}\)的最短距離線段是否在線段\(\overline{SE}\)上,我們只需要判斷\(\overrightarrow{PM}\)是否被\(\overrightarrow{PS},\overrightarrow{PE}\)所包住,而其中一種方法就是利用外積(叉積、cross product):
如果\(\overrightarrow{PM}\)是被包住的,那麼\(sgn(\overrightarrow{PM}\times\overrightarrow{PS})=-sgn(\overrightarrow{PM}\times\overrightarrow{PE})\)
反之如果\(sgn(\overrightarrow{PM}\times\overrightarrow{PS})=sgn(\overrightarrow{PM}\times\overrightarrow{PE})\),那麼代表沒有被包住。以上是利用了外積的性質:\(\overrightarrow{AB}\times\overrightarrow{CD}=-\overrightarrow{CD}\times\overrightarrow{AB}\)對於任何向量\(\overrightarrow{AB},\overrightarrow{CD}\)。
而要計算最短距離,我們有兩種方法:
- 利用內積是投影長度的相乘的性質,我們把線段的法向量和\(\overrightarrow{PE}\)作內積,再除以法向量的長度,就是最短距離。
- 利用外積的絕對值是向量們所展出的四邊形面積,且等於底乘以高,\(|\overrightarrow{PS}\times\overrightarrow{PE}|/|\overrightarrow{SE}|\)就是最短距離。
而透過觀察可以發現,\(P\)點到線段的長度,不是最短距離,那就是端點。有了以上資訊,我們就可以寫了。
程式碼:
const int _n=1e5+10;
int t,n,m;
PII p,prev,ps[_n];
db minn=1e9,maxx=-1e9,pi=acos(-1);
bool sgn(db x){
return x>=0.0?0:1;
}
db cp(PII u,PII v){
return (db)(u.fi*v.se-u.se*v.fi);
}
db len(PII u){
return sqrt(u.fi*u.fi+u.se*u.se);
}
void f(PII x,PII y){
PII tt2={y.fi-p.fi,y.se-p.se},tt3={x.fi-p.fi,x.se-p.se},tt1={-(tt3.se-tt2.se),tt3.fi-tt2.fi};
db res1=len(tt2),res2=len(tt3),res3=abs((db)(tt1.fi*tt2.fi+tt1.se*tt2.se))/len(tt1);
bool z=1;if(sgn(cp(tt1,tt2))==sgn(cp(tt1,tt3)))z=0;
if(z){
minn=min(minn,min(res1,min(res2,res3)));
maxx=max(maxx,max(res1,max(res2,res3)));
}else{
minn=min(minn,min(res1,res2));
maxx=max(maxx,max(res1,res2));
}
}
main(void) {ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
//這邊的PII必須是pair<ll,ll>
cin>>n>>p.fi>>p.se;rep(i,0,n)cin>>ps[i].fi>>ps[i].se; prev=ps[0];
rep(i,1,n)f(prev,ps[i]),prev=ps[i];
f(prev,ps[0]);
cout<<setprecision(20)<<pi*(maxx*maxx-minn*minn)<<'\n';
return 0;
}
標頭、模板請點Submission看
Submission
A. Peter and Snow Blower 解析(思維、幾何)的更多相关文章
- Codeforces Round #339 (Div. 1) A. Peter and Snow Blower 计算几何
A. Peter and Snow Blower 题目连接: http://www.codeforces.com/contest/613/problem/A Description Peter got ...
- codeforce #339(div2)C Peter and Snow Blower
Peter and Snow Blower 题意:有n(3 <= n <= 100 000)个点的一个多边形,这个多边形绕一个顶点转动,问扫过的面积为多少? 思路:开始就认为是一个凸包的问 ...
- [CodeForces - 614C] C - Peter and Snow Blower
C - Peter and Snow Blower Peter got a new snow blower as a New Year present. Of course, Peter decide ...
- A. Arena of Greed 解析(思維)
Codeforce 1425 A. Arena of Greed 解析(思維) 今天我們來看看CF1425A 題目連結 題目 略,請直接看原題. 前言 明明是難度1400的題目,但總感覺不是很好寫阿, ...
- E. Almost Regular Bracket Sequence 解析(思維)
Codeforce 1095 E. Almost Regular Bracket Sequence 解析(思維) 今天我們來看看CF1095E 題目連結 題目 給你一個括號序列,求有幾個字元改括號方向 ...
- C2. Power Transmission (Hard Edition) 解析(思維、幾何)
Codeforce 1163 C2. Power Transmission (Hard Edition) 解析(思維.幾何) 今天我們來看看CF1163C2 題目連結 題目 給一堆點,每兩個點會造成一 ...
- F. Moving Points 解析(思維、離散化、BIT、前綴和)
Codeforce 1311 F. Moving Points 解析(思維.離散化.BIT.前綴和) 今天我們來看看CF1311F 題目連結 題目 略,請直接看原題. 前言 最近寫1900的題目更容易 ...
- B. Two Arrays 解析(思維)
Codeforce 1417 B. Two Arrays 解析(思維) 今天我們來看看CF1417B 題目連結 題目 略,請直接看原題. 前言 a @copyright petjelinux 版權所有 ...
- C. k-Amazing Numbers 解析(思維)
Codeforce 1417 C. k-Amazing Numbers 解析(思維) 今天我們來看看CF1417C 題目連結 題目 略,請直接看原題. 前言 我實作好慢... @copyright p ...
随机推荐
- Java基础一篇过(二)泛型
一.啥是泛型 概述 泛型是Java SE 1.5的新特性,泛型的本质是参数化类型,即所操作的数据类型被指定为一个参数. 格式 类名<类型名> 标记符 E - Element (在集合中使用 ...
- Spring学习(八)AOP详解
文章更新时间:2020/04/06 一.一个例子 在上面的例子中,包租婆的核心业务就是签合同,收房租,那么这就够了,灰色框起来的部分都是重复且边缘的事,交给中介商就好了,这就是 AOP 的一个思想:让 ...
- Laravel驱动管理类Manager的分析和使用
Laravel驱动管理类Manager的分析和使用 第一部分 概念说明 第二部分 Illuminate\Support\Manager源码 第三部分 Manager类的使用 第一部分:概念解释 结合实 ...
- Solon详解(八)- Solon的缓存框架使用和定制
Solon详解系列文章: Solon详解(一)- 快速入门 Solon详解(二)- Solon的核心 Solon详解(三)- Solon的web开发 Solon详解(四)- Solon的事务传播机制 ...
- Centos-搜索文件或目录-find
find 在指定的目录下查找指定的文件 相关选项 -type 指定文件类型 -name 指定文件名字,支持通配符 -gid 指定用户组ID -uid 指定用户ID -empty 查找长度为 ...
- ECharts系列:玩转ECharts之常用图(折线、柱状、饼状、散点、关系、树)
一.背景 最近产品叫我做一些集团系列的统计图,包括集团组织.协作.销售.采购等方面的.作为一名后端程序员,于是趁此机会来研究研究这个库. 如果你仅仅停留在用的层面,那还是蛮简单的. 二.介绍 ECha ...
- JavaScript 将十进制数转换成格式类似于 0x000100 或 #000100 的十六进制数
将十进制数转换成格式类似于 0x000100 或 #000100 的十六进制数 1 <!DOCTYPE html> 2 <html> 3 <head> 4 < ...
- P3431 [POI2005]AUT-The Bus
Link 简化题意: 给你一张网格图,每个点有其对应的权值,让你找出来一条横纵坐标都单调不降的路径,并最大化经过点的权值. 分析: 这是经典的二维数点或者二维偏序问题. 如果两维一直在变的话,我们不是 ...
- Vue学习使用系列九【axiox全局默认配置以及结合Asp.NetCore3.1 WebApi 生成显示Base64的图形验证码】
1:前端code 1 <!DOCTYPE html> 2 <html lang="en"> 3 4 <head> 5 <meta char ...
- 洛谷 P3413 【萌数】
敲完这篇题解,我就,我就,我就,嗯,好,就这样吧... 思路分析: 首先我们要知道一个回文串的性质--假如说一个[l-1,r+1]的串是回文的,那么[l,r]一定也是回文的. 所以我们只要记录前一个数 ...