收集邮票 (概率dp)

题目描述

有 \(n\) 种不同的邮票,皮皮想收集所有种类的邮票。唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是 \(n\) 种邮票中的哪一种是等概率的,概率均为 \(\frac{1}{n}\) 。但是由于凡凡也很喜欢邮票,所以皮皮购买第 \(k\) 张邮票需要支付 \(k\) 元钱。 现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望。

输入格式

一行,一个数字 \(N,N\leqslant 10000\)

输出格式

要付出多少钱. 保留二位小数

样例

样例输入

3

样例输出

21.25

数据范围与提示

\(N\leqslant 10000\)

分析

按照概率 \(dp\) 的套路,我们反向定义方程,反着推,定义 \(f[i]\) 为已经有了 \(i\) 种,还需要买几次。 \(g[i]\) 为已经有了 \(i\) 种,还需要多少钱。

因为当前已经有了 \(i\) 种了,每种选的可能性相同,所以这一次选重复的概率为 \(\frac{i}{n}\) ,此时的次数就是 \(f[i] + 1\) ,因为当前拿了一个重复的,所以还要多拿一次,所以加一。

不重复的概率就是 \(\frac{n-i}{n}\),次数就是 \(f[i+1] + 1\),因为没拿重复的,所以是拿了 \(i+1\) 种的步数加一。那么 \(f[i]\) 的转移就是:

\[f[i] = (f[i] + 1) \times \frac{i}{n} + (f[i+1] + 1) \times \frac{n-i}{n}
\]

化简一下就是:

\[f[i] = f[i+1] \times \frac{n}{n-i}
\]

接下来考虑钱数的转移,每一次增加的价格就是取的次数,而拿重复的概率是 \(\frac{i}{n}\),所以这部分就是 \((g[i]+f[i]+1)\times \frac{i}{n}\)。

其次就是没有重复,那么这部分就是 \((g[i+1]+f[i+1]+1)\times \frac{n-i}{n}\)

所以总的就是 :

\[g[i] = (g[i]+f[i]+1)\times \frac{i}{n} + (g[i+1]+f[i+1]+1)\times \frac{n-i}{n}
\]

化简完就是:

\[g[i] = \frac{i}{n-i}\times f[i] + g[i+1] + f[i+1] + \frac{n}{n-i}
\]

然后倒着枚举,转移就很简单了。

代码

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
using namespace std;
const int L = 1 << 20;
char buffer[L],*S,*T;
#define getchar() (S == T &&(T = (S = buffer) + fread(buffer,1,L,stdin),S == T) ? EOF : *S++)
const int maxn = 1e5 + 10;
double f[maxn],g[maxn];
inline int read(){
int s = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)){
if(ch == '-')f = -1;
ch = getchar();
}
while(isdigit(ch)){
s = s * 10 + ch - '0';
ch = getchar();
}
return s * f;
}
int main(){
freopen("D.in","r",stdin);
freopen("D.out","w",stdout);
int n = read();
for(int i = n - 1; ~i ; --i){
f[i] = f[i+1] + (1.0 * n) / (1.0 * (n - i));
g[i] = (1.0 * i) / (1.0 * (n - i)) * (f[i] + 1) + g[i+1] + f[i+1] + 1;
}
printf("%.2lf",g[0]);
return 0;
}

收集邮票 (概率dp)的更多相关文章

  1. BZOJ 1426 收集邮票 ——概率DP

    $f(i)$表示现在有$i$张,买到$n$张的期望 所以$f(i)=f(i+1)+\frac {n}{n-i}$ 费用提前计算,每张邮票看做一元,然后使后面每一张加1元 $g(i)$表示当前为$i$张 ...

  2. 【BZOJ1426】收集邮票 概率DP 论文题 推公式题

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  3. 【BZOJ-1426】收集邮票 概率与期望DP

    1426: 收集邮票 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 261  Solved: 209[Submit][Status][Discuss] ...

  4. [P4550] 收集邮票 - 概率期望,dp

    套路性地倒过来考虑,设\(f[i]\)表示拥有了\(i\)种票子时还需要多少次购买,\(g[i]\)表示还需要多少钱 推\(g[i]\)递推式时注意把代价倒过来(反正总数一定,从顺序第\(1\)张开始 ...

  5. 【BZOJ1426】收集邮票 期望DP

    题目大意 有\(n\)种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是\(n\)种邮票中的哪一种是等概率的,概率均为\(\frac{1} ...

  6. 【BZOJ】1426: 收集邮票 期望DP

    [题意]有n种不同的邮票,第i次可以花i元等概率购买到一种邮票,求集齐n种邮票的期望代价.n<=10^4. [算法]期望DP [题解]首先设g[i]表示已拥有i张邮票集齐的期望购买次数,根据全期 ...

  7. BZOJ 1426--收集邮票(概率与期望&DP)

    1426: 收集邮票 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 504  Solved: 417[Submit][Status][Discuss] ...

  8. 概率dp集合

    bzoj1076 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后 ...

  9. 嘴巴题7 BZOJ1426: 收集邮票

    Time Limit: 1 Sec Memory Limit: 162 MB Submit: 546 Solved: 455 [Submit][Status][Discuss] Description ...

随机推荐

  1. 占个坑 未来学qt的时候专用

    今天看了一个大佬发了一个上位机图片便向大佬问道 ”上位机是用什么软件做的“大佬抛下一句qt ,在业界内很通用,windows和linux通吃,便让我萌生了一个想法,去学qt.虽说上位机时常听到,但是自 ...

  2. 任务调度中心xxl-job对外接口使用

    xxl-job主要分为调度中心和执行器提供了图像化界面,操作简单上手快,基本实现定时任务自动执行,同时可以针对任务日志进行查看.具体xxl-job可以再github上下载:https://github ...

  3. Nginx(一)Linux上的Nginx安装步骤

    一.Windows下安装 解压:nginx-windows 双击: nginx.exe 能看到nginx欢迎界面说明,nginx安装成功 演示下 nginx做静态服务器 二.Linux下安装 (1). ...

  4. 数据库(二):初识sql语句

    进击のpython ***** 数据库--初识sql语句 前面提到了说,数据库管理系统就像我们曾经做过的输入命令返回结果的socket通信差不多 那既然提到了命令,在MySQL中,有一些基本的语句,就 ...

  5. heredoc

    Heredoc在正规的PHP文档中和技术书籍中一般没有详细讲述.他是一种Perl风格的字符串输出技术.使用heredoc技术可以实现界面与代码的准分离,比如phpwind模板.规则如下:1.”< ...

  6. Android Zero (开篇)

    Android Zero == 从零开始 本文章主要打算给将要入门Android或刚刚入门Android的小伙伴适用的,开篇的几个案例都会抛弃所有现在用到的新技术和第三方框架,用最原生的方法从0演示, ...

  7. ROS 机器人技术 - 广播与接收 TF 坐标

    上次我们学习了 TF 的基本概念和如何发布静态的 TF 坐标: ROS 机器人技术 - TF 坐标系统基本概念 ROS 机器人技术 - 静态 TF 坐标帧 这次来总结下如何发布一个自定义的 TF 坐标 ...

  8. PHP 命名空间(namespace)定义

    PHP 命名空间(namespace) PHP 命名空间(namespace)是在PHP 5.3中加入的,如果你学过C#和Java,那命名空间就不算什么新事物. 不过在PHP当中还是有着相当重要的意义 ...

  9. PHP xml_error_string() 函数

    定义和用法 xml_error_string() 函数获取 XML 解析器的错误描述.高佣联盟 www.cgewang.com 如果成功,该函数则返回错误描述.如果失败,则返回 FALSE. 语法 x ...

  10. 使用docker安装nginx并配置端口转发

    使用docker安装并运行nginx命令: docker run --name=nginx -p 80:80 -d docker.io/nginx 使用命令: docker exec -it ngin ...