AI 在各大领域的发展有目共睹,而作为人工智能皇冠上的明珠--自然语言处理却成果了了,大多实现或者以半成品的形式躺在实验室中,或者仅仅作为某个产品的辅助功能。
而这一情况在 BERT 出现后出现了很大的改善。

本文就是通过一款工具的介绍,带大家了解下 BERT 对 NLP 实际效果带来的巨大改变。

(目前工具还在内测中,评测君暗中观察到,每隔段时间都会有非常大的更新)
话不多说,先上截图:

真的是让人惊讶!
在目前的工业 NLP 中,数个类似 词性标注、命名实体识别、实体关系抽取、内容理解、意图识别等任务虽然处于不断进步中,但依然距离实际应用有较大距离,主要是 Bad case 太多、结果太不可预测、人工干预乏力。很难相信,在这样的技术屏障下,通过使用 BERT 算法,这个工具依然实现了巨大的突破。
大家可以自行前往体验:

http://enpuz.com/The-instant-I-did-it-I-knew-I-had-made-a-mistake.=

这里提醒下,目前这个工具限制所输入的英语句子长度,经过评测君体验,不算标点差不多是 12 个单词左右,虽然足够满足学生的需求,但在现实环境中,不得不说是一个较大的限制,比较令人遗憾,希望未来会放开限制!

如下是转自 Standford Parser 的算法截图:

这里可以对应的看下使用 BERT 算法带来的变化:

能力提升:

1. 支持识别句子类型,如陈述句、疑问句、祈使句。
2. 支持分析复杂句的句子结构,如主语从句、宾语从句、定语从句、表语从句、状语从句。
3. 支持分析并列句的句子结构,如并列句、转折句、让步句。
4. 支持分析主句、从句的时态。
5. 支持分析句子中包含的核心语法、固定搭配、动词短语。
6. 支持疑问句、倒装句、省略句等特殊句子的内在结构。
7. 支持识别人名、地名。
8. 能有效处理未登录词。
9. 能给出重点短语、固定搭配的翻译
10. 能给出重点短语、固定搭配的例子、用法、语法扩展
11. 能给出重点短语、固定搭配对应的相似短语
12. 具有较强的命名实体识别能力。
13. 具有较强的关系提取能力。
14. 具有完整的意图识别能力。
15. 具有较强的推理能力。
16. 具有一定的自学习能力。

可能的不足:
1. 长度限制,只支持 12 个单词。
2. 不支持成分缺失较多的口语。
3. 单词、短语翻译覆盖率不足。
4. 缺少反义词、近义词等常见词典工具具备的数据。
5. 内容表现单一。

当然3、4、5跟算法本身关系不是特别大。

总结
作为少有的以 nlp 能力为主打的产品,尽管有诸如长度、不支持口语等限制,评测君还是比较期待这款工具未来的变化。
大家也可以去体验:http://enpuz.com/
如果评测内容不实不准,欢迎私信。
码字不易,求赞求推荐!

【AI 算法评测】BERT 对 NLP 效果的改善,不负众望!的更多相关文章

  1. 阿里开源新一代 AI 算法模型,由达摩院90后科学家研发

    最炫的技术新知.最热门的大咖公开课.最有趣的开发者活动.最实用的工具干货,就在<开发者必读>! 每日集成开发者社区精品内容,你身边的技术资讯管家. 每日头条 阿里开源新一代 AI 算法模型 ...

  2. AI算法测评事项

    前言 注:大概2017年-2018年国内人工智能热度达到顶峰,随后热度开始逐渐减少.2018年前人工智能被投资界.学术界.工业界和媒体炒的特别热,各大企业都想尝试一下深度学习技术在业务场景的应用.试水 ...

  3. H5版俄罗斯方块(3)---游戏的AI算法

    前言: 算是"long long ago"的事了, 某著名互联网公司在我校举行了一次"lengend code"的比赛, 其中有一题就是"智能俄罗斯方 ...

  4. AI佳作解读系列(二)——目标检测AI算法集杂谈:R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3

    1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...

  5. 聊聊找AI算法岗工作

    https://blog.csdn.net/weixin_42137700/article/details/81628028 首先,本文不是为了增加大家的焦虑感,而是站在一名学生的角度聊聊找AI算法岗 ...

  6. AI算法测评(二)--算法测试流程

    根据算法测试过程中遇到的一些问题和管理规范, 梳理出算法测试工作需要关注的一些点: 编号 名称 描述信息 备注 1 明确算法测试需求 明确测试目的 明确测试需求, 确认测试需要的数据及场景 明确算法服 ...

  7. 浅析初等贪吃蛇AI算法

    作为小学期程序设计训练大作业的一部分,也是自己之前思考过的一个问题,终于利用小学期完成了贪吃蛇AI的一次尝试,下作一总结. 背景介绍: 首先,我针对贪吃蛇AI这一关键词在百度和google上尽心了检索 ...

  8. 游戏人工智能 读书笔记 (四) AI算法简介——Ad-Hoc 行为编程

    本文内容包含以下章节: Chapter 2 AI Methods Chapter 2.1 General Notes 本书英文版: Artificial Intelligence and Games ...

  9. Bert 时代的创新(应用篇):Bert 在 NLP 各领域的

    Bert 时代的创新(应用篇):Bert 在 NLP 各领域的

随机推荐

  1. MySQL之字段数据类型和列属性

    数据类型: 对数据进行统一的分类,从系统的角度出发,为了能够使用统一的方式进行管理,更好的利用有限的空间. SQL中将数据类型分成了三大类:数值类型.字符串类型.时间日期类型. 数值型: 数值型数据: ...

  2. Nginx实现JWT验证-基于OpenResty实现

    介绍 权限认证是接口开发中不可避免的问题,权限认证包括两个方面 接口需要知道调用的用户是谁 接口需要知道该用户是否有权限调用 第1个问题偏向于架构,第2个问题更偏向于业务,因此考虑在架构层解决第1个问 ...

  3. Laravel 配置 SqlDebug 服务,进行实时监听打印 SQL

    0:释义 什么是服务容器 简而言之,Laravel 服务容器 是一个用于存储绑定组件的盒子,它还会为应用提供所需的服务. Laravel 服务容器是用于管理类的依赖和执行依赖注入的工具,By Lara ...

  4. org.apache.catalina.LifecycleException: Failed to start component [StandardEngine[Catalina].StandardHost[localhost].StandardContext[/book]] Tomcat ServletXml 异常

    此异常是因为xml配置serlvet-url-pattern缺少’/’     应该改为 /regist   背景: 写了base标签 form表单的action属性的值   个人分析: ️表单提交时 ...

  5. Python编程语言简介

    Python诞生于20世纪90年代初,由荷兰人吉多·范罗苏姆发明.那么,Python这一门编程语言是如何发明的呢?这之中又有怎么的故事呢?请看下面. 故事发生在1989年的圣诞节上,吉多先生为了打发无 ...

  6. Seaborn实现多变量分析

    import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt sns.set ...

  7. python基础day5_元组

    元祖---只读列表,可循环查询,可切片 儿子不能改,孙子可能可以改.增加(主要看要操作的是属于列表还是元组) tu = (1,2,3,'alex',[2,3,4,'taibai'],'egon') t ...

  8. Qt 之 Graphics View Framework 简介

    Graphics View Framework 交互式 2D 图形的 Graphics View 框架概述.自 Qt4.2 中引入了 Graphics View,以取代其前身 QCanvas.Grap ...

  9. 动态绑定CheckBoxList,并默认勾选多选框

    首先这是界面展示列: 当我点击更新操作后,效果如下: 其中所属区域的复选框为动态绑定,并且已为我们默认勾选了相关选项,具体操作如下: 前台代码: <tr> <td class=&qu ...

  10. Python的10个神奇的技巧

    尽管从表面上看,Python似乎是任何人都可以学习的一种简单语言,但确实如此,许多人可能惊讶地知道一个人可以熟练掌握该语言. Python是其中的一门很容易学习的东西,但可能很难掌握. 在Python ...