# C:\Users\lenovo\Desktop\总结\Python
# 读取 Excel 文件并进行筛选 import pandas as pd # 设置列对齐
pd.set_option("display.unicode.ambiguous_as_wide",True)
pd.set_option("display.unicode.east_asian_width",True) # 读取工号姓名时段交易额,使用默认索引
dataframe = pd.read_excel(r'C:\Users\lenovo\Desktop\总结\Python\超市营业额.xlsx',
usecols = ['工号','姓名','时段','交易额']) # 打印前十行数据
dataframe[:10]
'''
工号 姓名 时段 交易额
0 1001 张三 9:00-14:00 2000
1 1002 李四 14:00-21:00 1800
2 1003 王五 9:00-14:00 800
3 1004 赵六 14:00-21:00 1100
4 1005 周七 9:00-14:00 600
5 1006 钱八 14:00-21:00 700
6 1006 钱八 9:00-14:00 850
7 1001 张三 14:00-21:00 600
8 1001 张三 9:00-14:00 1300
9 1002 李四 14:00-21:00 1500
'''
# 跳过 1 2 4 行,以第一列姓名为索引
dataframe2 = pd.read_excel(r'C:\Users\lenovo\Desktop\总结\Python\超市营业额.xlsx',
skiprows = [1,2,4],
index_col = 1)
'''注:张三李四赵六的第一条数据跳过
工号 日期 时段 交易额 柜台
姓名
王五 1003 20190301 9:00-14:00 800 食品
周七 1005 20190301 9:00-14:00 600 日用品
钱八 1006 20190301 14:00-21:00 700 日用品
钱八 1006 20190301 9:00-14:00 850 蔬菜水果
张三 1001 20190302 14:00-21:00 600 蔬菜水果
''' # 筛选符合特定条件的数据
# 读取超市营业额数据
dataframe = pd.read_excel(r'C:\Users\lenovo\Desktop\总结\Python\超市营业额.xlsx') # 查看 5 到 10 的数据
dataframe[5:11]
'''
工号 姓名 日期 时段 交易额 柜台
5 1006 钱八 20190301 14:00-21:00 700 日用品
6 1006 钱八 20190301 9:00-14:00 850 蔬菜水果
7 1001 张三 20190302 14:00-21:00 600 蔬菜水果
8 1001 张三 20190302 9:00-14:00 1300 化妆品
9 1002 李四 20190302 14:00-21:00 1500 化妆品
10 1003 王五 20190302 9:00-14:00 1000 食品
'''
# 查看第六行的数据
dataframe.iloc[5]
'''
工号 1006
姓名 钱八
时段 14:00-21:00
交易额 700
Name: 5, dtype: object
'''
dataframe[:5]
'''
工号 姓名 时段 交易额
0 1001 张三 9:00-14:00 2000
1 1002 李四 14:00-21:00 1800
2 1003 王五 9:00-14:00 800
3 1004 赵六 14:00-21:00 1100
4 1005 周七 9:00-14:00 600
'''
# 查看第 1 3 4 行的数据
dataframe.iloc[[0,2,3],:]
'''
工号 姓名 时段 交易额
0 1001 张三 9:00-14:00 2000
2 1003 王五 9:00-14:00 800
3 1004 赵六 14:00-21:00 1100
'''
# 查看第 1 3 4 行的第 1 2 列
dataframe.iloc[[0,2,3],[0,1]]
'''
工号 姓名
0 1001 张三
2 1003 王五
3 1004 赵六
'''
# 查看前五行指定,姓名、时段和交易额的数据
dataframe[['姓名','时段','交易额']][:5]
'''
姓名 时段 交易额
0 张三 9:00-14:00 2000
1 李四 14:00-21:00 1800
2 王五 9:00-14:00 800
3 赵六 14:00-21:00 1100
4 周七 9:00-14:00 600
'''
dataframe[:5][['姓名','时段','交易额']]
'''
姓名 时段 交易额
0 张三 9:00-14:00 2000
1 李四 14:00-21:00 1800
2 王五 9:00-14:00 800
3 赵六 14:00-21:00 1100
4 周七 9:00-14:00 600
'''
# 查看第 2 4 5 行 姓名,交易额 数据 loc 函数
dataframe.loc[[1,3,4],['姓名','交易额']]
'''
姓名 交易额
1 李四 1800
3 赵六 1100
4 周七 600
'''
# 查看第四行的姓名数据
dataframe.at[3,'姓名']
# '赵六' # 查看交易额大于 1700 的数据
dataframe[dataframe['交易额'] > 1700]
'''
工号 姓名 时段 交易额
0 1001 张三 9:00-14:00 2000
1 1002 李四 14:00-21:00 1800
'''
# 查看交易额总和
dataframe.sum()
'''
工号 17055
姓名 张三李四王五赵六周七钱八钱八张三张三李四王五赵六周七钱八李四王五张三...
时段 9:00-14:0014:00-21:009:00-14:0014:00-21:009:00...
交易额 17410
dtype: object
'''
# 某一时段的交易总和
dataframe[dataframe['时段'] == '14:00-21:00']['交易额'].sum()
# # 查看张三在下午14:00之后的交易情况
dataframe[(dataframe.姓名 == '张三') & (dataframe.时段 == '14:00-21:00')][:10]
'''
工号 姓名 时段 交易额
7 1001 张三 14:00-21:00 600
'''
# 查看日用品的销售总额
# dataframe[dataframe['柜台'] == '日用品']['交易额'].sum() # 查看张三总共的交易额
dataframe[dataframe['姓名'].isin(['张三'])]['交易额'].sum()
# # 查看交易额在 1500~3000 之间的记录
dataframe[dataframe['交易额'].between(1500,3000)]
'''
工号 姓名 时段 交易额
0 1001 张三 9:00-14:00 2000
1 1002 李四 14:00-21:00 1800
9 1002 李四 14:00-21:00 1500
'''

2020-05-07

pandas_读取Excel并筛选特定数据的更多相关文章

  1. Java读取Excel指定列的数据详细教程和注意事项

    本文使用jxl.jar工具类库实现读取Excel中指定列的数据. jxl.jar是通过java操作excel表格的工具类库,是由java语言开发而成的.这套API是纯Java的,并不依赖Windows ...

  2. 利用java反射机制实现读取excel表格中的数据

    如果直接把excel表格中的数据导入数据库,首先应该将excel中的数据读取出来. 为了实现代码重用,所以使用了Object,而最终的结果是要获取一个list如List<User>.Lis ...

  3. java用poi读取Excel表格中的数据

    Java读写Excel的包是Apache POI(项目地址:http://poi.apache.org/),因此需要先获取POI的jar包,本实验使用的是POI 3.9稳定版.Apache POI 代 ...

  4. 读取Excel表格日期类型数据的时候

    用POI读取Excel数据:(版本号:POI3.7) 1.读取Excel 2.Excel数据处理: Excel存储日期.时间均以数值类型进行存储,读取时POI先判断是是否是数值类型,再进行判断转化 1 ...

  5. .Net读取Excel文件时丢失数据的问题 (转载)

    相信很多人都试过通过OleDB读取Excel文件,这种方法效率十分高,只是有一点会让人十分头痛,就是当一列中既有混合型数据,又有纯数据时,往往容易丢失数据. 百度过后,改连接字符串 “HDR=YES; ...

  6. C#读取Excel表中的数据时,为何有些行的字段内容读取不到

    转载:http://bbs.csdn.net/topics/360220285 1.当某列数据中含有混合类型时,在.NET中使用Microsoft.Jet.OLEDB.4.0来读取Excel文件造成数 ...

  7. python读取excel表格中的数据

    使用python语言实现Excel 表格中的数据读取,需要用到xlrd.py模块,实现程序如下: import xlrd #导入xlrd模块 class ExcelData(): def __init ...

  8. 接口测试中读取excel中的请求数据含有中文问题,UnicodeEncodeError: 'latin-1' codec can't encode character '\u5c0f' in position

    错误信息:UnicodeEncodeError: 'latin-1' codec can't encode character '\u5c0f' in position 31: Body ('小') ...

  9. Python xlrd模块读取Excel表中的数据

    1.xlrd库的安装 直接使用pip工具进行安装(当然也可以使用pycharmIDE进行安装,这里就不详述了) pip install xlrd 2.xlrd模块的一些常用命令 ①打开excel文件并 ...

随机推荐

  1. SpringBoot-读取classpath下文件

    文章目录 开发过程中,必不可少的需要读取文件,对于打包方式的不同,还会存在一些坑,比如以jar包方式部署时,文件都存在于jar包中,某些读取方式在开发工程中都可行,但是打包后,由于文件被保存在jar中 ...

  2. java重试

    项目中有很多需要重试的场景,而每次都得写如下的逻辑 for (int i=0;i++;i<retry){ try{ do(//逻辑代码); if(success){ break; } }catc ...

  3. 服务消费者(Feign-上)

    上一篇文章,讲述了Ribbon去做负载请求的服务消费者,本章讲述声明性REST客户端:Feign的简单使用方式 - Feign简介 Feign是一个声明式的Web服务客户端.这使得Web服务客户端的写 ...

  4. linux下 解释 终端命令 ls -al或者ls -li 输出的信息

    $ ls -al            drwxr-xr-x.            wjshan0808    wjshan0808        Sep :    .cache $ ls -li ...

  5. 如何在Mac中配置Python虚拟环境,踩了好多坑

    如何在Mac中配置Python虚拟环境 1.安装virtualenv pip3 install virtualenv 2.安装virtualenvwrapper pip3 install virtua ...

  6. CSS粘性定位

    粘性定位(position:sticky) 1.定义 粘性定位可以被认为是相对定位和固定定位的混合.元素在跨越特定阈值前为相对定位,之后为固定定位.(MDN传送门) 这个特定阈值指的是 top, ri ...

  7. SQL基础随记2 视图 存储过程

    SQL基础随记2 视图 存储过程   View CREATE/ALTER/DROP VIEW ViewName as SELECT(...) 可以在视图的基础上继续创建视图,即,将之前创建的视图当做表 ...

  8. Mysql如何取当日的数据

    下面的sql语句可以取出当日的数据 SELECT * FROM table WHERE 时间字段 BETWEEN DATE_FORMAT(NOW(),'%Y-%m-%d 00:00:00') AND ...

  9. 14.刚体组件Rigidbody

    刚体组件是物理类组件,添加有刚体组件的物体,会像现实生活中的物体一样有重力.会下落.能碰撞. 给物体添加刚体: 选中游戏物体->菜单Component->Physics->Rigid ...

  10. day42 io模型

    目录 一.io模型简介 二.阻塞io阻塞IO模型图.png 三.非阻塞io 四.io多路复用 五.异步io 一.io模型简介 Stevens在文章中一共比较了五种IO Model: blocking ...