UVA - 11525

题意:输出1~n的所有排列,字典序大小第∑k1Si∗(Ki)!个


学了好多知识

1.康托展开

X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0!

其中a[i]为第i位是i往右中的数里 第几大的-1(比他小的有几个)。

其实直接想也可以,有点类似数位DP的思想,a[n]*(n-1)!也就是a[n]个n-1的全排列,都比他小

一些例子 http://www.cnblogs.com/hxsyl/archive/2012/04/11/2443009.html

如我想知道321是{1,2,3}中第几个大的数可以这样考虑 :

  第一位是3,当第一位的数小于3时,那排列数小于321 如 123、 213 ,小于3的数有1、2 。所以有2*2!个。再看小于第二位2的:小于2的数只有一个就是1 ,所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个 
。所以321是第6个大的数。 2*2!+1*1!是康托展开。

  再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以 
有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个大数。


2.树状数组求区间第k小

查了一堆资料,稍微有点明白了

用a[i]表示i出现次数,用一个树状数组c[]维护a[]

设第k小为x,那么sum(x)=k

我们的做法是用二进制反向构造x

cnt是当前x的排名(<=x的个数)

把x打成二进制,从高到低枚举(1<<i),可以发现x加上(1<<i)后lowbit值是不断减小的(lowbit的定义是最右面1对应的值)

cnt加上新x的c值(这一块二进制加上的效果相当于让x在树状数组上跳了一下,结果也就是当前sum(x)的结果)

if(x>=n||cnt+c[x]>=k) 就不加了

这样就找到了最大的比x小的元素,++就行了

其实就记住,用二进制构造x-1,c数组类比着加就行了

二进制逼近,反向求和的过程

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=5e5+,INF=1e6+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,x,k;
int c[N];
inline int lowbit(int x){return x&-x;}
inline void add(int p,int v){
for(;p<=n;p+=lowbit(p)) c[p]+=v;
}
inline int sum(int p){
int res=;
for(;p>;p-=lowbit(p)) res+=c[p];
return res;
}
inline int kth(int k){
int x=,cnt=;
for(int i=;i>=;i--){
x+=(<<i);
if(x>=n||cnt+c[x]>=k) x-=(<<i);
else cnt+=c[x];
}
return x+;
}
int main(){
int T=read();
while(T--){
n=read();
memset(c,,sizeof(c));
for(int i=;i<=n;i++) add(i,);
for(int i=;i<=n;i++){
k=read()+;
x=kth(k);
printf("%d%c",x,i==n?'\n':' ');
add(x,-);
}
}
}

UVA11525 Permutation[康托展开 树状数组求第k小值]的更多相关文章

  1. 树状数组求第K小值 (spoj227 Ordering the Soldiers &amp;&amp; hdu2852 KiKi&#39;s K-Number)

    题目:http://www.spoj.com/problems/ORDERS/ and pid=2852">http://acm.hdu.edu.cn/showproblem.php? ...

  2. 树状数组求第k小的元素

    int find_kth(int k) { int ans = 0,cnt = 0; for (int i = 20;i >= 0;i--) //这里的20适当的取值,与MAX_VAL有关,一般 ...

  3. hdu 4217 Data Structure? 树状数组求第K小

    Data Structure? Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  4. POJ2985 The k-th Largest Group[树状数组求第k大值+并查集||treap+并查集]

    The k-th Largest Group Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8807   Accepted ...

  5. *HDU2852 树状数组(求第K小的数)

    KiKi's K-Number Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  6. poj 2985 The k-th Largest Group 树状数组求第K大

    The k-th Largest Group Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8353   Accepted ...

  7. HDU 5249 离线树状数组求第k大+离散化

    KPI Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. HDU 2852 (树状数组+无序第K小)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2852 题目大意:操作①:往盒子里放一个数.操作②:从盒子里扔掉一个数.操作③:查询盒子里大于a的第K小 ...

  9. 树状数组求第K大(From CLJ)

    ; <<log2[n];p;p>>=) if(a[ret+p]<=kth) kth-=a[ret+=p]; return ret;

随机推荐

  1. linq lambda left join

    //var list = table1.Join(table2, ee => ee.Id, ff => ff.table1_Id, (ee, ff) => new { ee, ff  ...

  2. input输入框提示语

    <input id="username" name="username" type="text" placeholder=" ...

  3. 基于WCF MSMQ 的企业应用解决方案

    最近研究了一下基于MSMQ的WCF应用,从书上.网上查了很多资料,但始终没能彻底理解WCF-MSMQ的工作原理,也没能得到一个合理的应用解决方案.索性还是自己做个实验,探索一下吧.经过反复试验,颇有收 ...

  4. OData V4 系列 .net应用

    OData 学习目录 添加 OData Client Code Generator 扩展 添加OData T4生成工具 修改 T4 模板的 MetadataDocumentUri 运行Web项目,之后 ...

  5. JavaScript闭包理解【关键字:普通函数、闭包、解决获取元素标签索引】

    以前总觉得闭包很抽象,很难理解,所以百度一下"闭包"概览,百度的解释是:“闭包是指可以包含自由(未绑定到特定对象)变量的代码块:这些变量不是在这个代码块内或者任何全局上下文中定义的 ...

  6. JQ中的方法、事件及动画

    css( ) 除了可以为元素添加样式外,还可用来查询元素,某样式值alert($('.cls1').css('width')); //100px(返回带单位的值)注意:原生CSS样式中有-的去掉并且将 ...

  7. Sharepoint学习笔记—习题系列--70-576习题解析 -(Q99-Q101)

    Question  99 You have designed a new SharePoint 2010 Web Part that was deployed to the testing envir ...

  8. For each循环中使用remove方法。

    List<String> list =new ArrayList<String>(); list.add("boss"); list.add("g ...

  9. Linux常用命令:sed

    本文记录的是自己在学习<Linux私房菜>中正则表达式的笔记. 关于行尾符$ 如果文件本身没有内容,比如使用touch新建的文件,那么$将会没有意义.例如下面操作: 先使用touch新建了 ...

  10. SE(homework2)_软件分析

    老师这次课后的作业具有开放性,很容易的我会想到经常用的那些工具软件,MATLAB,envi,ARCGIS等等. Q1:此类软件是什么时候出现的,这些软件是怎么说服你(陌生人)成为它们的用户的?他们的目 ...