本文将引导快速使用 Detectron2 ,介绍用摄像头测试实时目标检测。

环境准备

基础环境

Detectron2

安装,

# 创建 Python 虚拟环境
conda create -n detectron2 python=3.8 -y
conda activate detectron2 # 安装 PyTorch with CUDA
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2 -c pytorch -y # 安装 Detectron2
git clone https://github.com/facebookresearch/detectron2.git
python -m pip install -e detectron2 # 安装 OpenCV ,捕获相机图像及显示
pip install opencv-python

检查,

$ python - <<EOF
import torch, torchvision
print(torch.__version__, torch.cuda.is_available())
import cv2 as cv
print(cv.__version__)
EOF 1.7.1 True
4.5.1

现有模型进行推断

从其 model zoo 选择一个感兴趣的模型进行推断。这里以 COCO R50-FPN 3x 训练的各类模型进行演示。

下载 model 进如下路径,

detectron2/models/
├── COCO-Detection
│   └── faster_rcnn_R_50_FPN_3x
│   └── 137849458
│   ├── metrics.json
│   └── model_final_280758.pkl
├── COCO-InstanceSegmentation
│   └── mask_rcnn_R_50_FPN_3x
│   └── 137849600
│   ├── metrics.json
│   └── model_final_f10217.pkl
├── COCO-Keypoints
│   └── keypoint_rcnn_R_50_FPN_3x
│   └── 137849621
│   ├── metrics.json
│   └── model_final_a6e10b.pkl
└── COCO-PanopticSegmentation
└── panoptic_fpn_R_50_3x
└── 139514569
├── metrics.json
└── model_final_c10459.pkl

目标检测 - Faster R-CNN

执行,

cd detectron2/
mkdir -p _output python demo/demo.py \
--config-file configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml \
--input ../data/bicycle.jpg \
--output _output/bicycle_COCO-Detection.jpg \
--confidence-threshold 0.5 \
--opts MODEL.WEIGHTS models/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl

结果,

实例分割 - Mask R-CNN

执行,

python demo/demo.py \
--config-file configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \
--input ../data/bicycle.jpg \
--output _output/bicycle_COCO-InstanceSegmentation.jpg \
--confidence-threshold 0.5 \
--opts MODEL.WEIGHTS models/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl

结果,

姿态估计 - Keypoint R-CNN

执行,

python demo/demo.py \
--config-file configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml \
--input ../data/bicycle.jpg \
--output _output/bicycle_COCO-Keypoints.jpg \
--confidence-threshold 0.5 \
--opts MODEL.WEIGHTS models/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl

结果,

全景分割 - Panoptic FPN

执行,

python demo/demo.py \
--config-file configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml \
--input ../data/bicycle.jpg \
--output _output/bicycle_COCO-PanopticSegmentation.jpg \
--confidence-threshold 0.5 \
--opts MODEL.WEIGHTS models/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/model_final_c10459.pkl

结果,

WebCam 摄像头使用

获取本机的 WebCam 列表,

$ ls /dev/video*
/dev/video0 /dev/video1 /dev/video2 /dev/video3 # 查看 WebCam 列表
# 如下:有 0, 2 两个 videos
# - 第一个是 video ,第二个是 metadata
# - 从 Linux Kernel 4.16 开始,增加的 metadata node
$ sudo apt install v4l-utils
$ v4l2-ctl --list-devices
HD Webcam: HD Webcam (usb-0000:00:14.0-13):
/dev/video0
/dev/video1 HD Pro Webcam C920 (usb-0000:00:14.0-4):
/dev/video2
/dev/video3 # 查看某 WebCam 支持的格式、分辨率、fps 信息
$ v4l2-ctl -d 2 --list-formats-ext

demo/demo.py 可修改期望打开的摄像头及其分辨率等,

elif args.webcam:
cam = cv2.VideoCapture(2)
cam.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cam.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
cam.set(cv2.CAP_PROP_FPS, 30)
print(f"wencam: {cam.get(cv2.CAP_PROP_FRAME_WIDTH)}x{cam.get(cv2.CAP_PROP_FRAME_HEIGHT)} {cam.get(cv2.CAP_PROP_FPS)}")

运行,

python demo/demo.py \
--config-file configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml \
--webcam \
--confidence-threshold 0.5 \
--opts MODEL.WEIGHTS models/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl

效果,

GoCoding 个人实践的经验分享,可关注公众号!

Detectron2 快速开始,使用 WebCam 测试的更多相关文章

  1. 快速搭建appium自动测试环境

    首先申明本文是基本于Python与Android来快速搭建Appium自动化测试环境: 主要分为以下几个步骤: 前提条件: 1)安装与配置python环境,打开 Python官网,找到"Do ...

  2. 如何快速掌握DDT数据驱动测试?

    1.前言 (网盗概念^-^)相同的测试脚本使用不同的测试数据来执行,测试数据和测试行为完全分离, 这样的测试脚本设计模式称为数据驱动.(网盗结束)当我们测试某个网站的登录功能时,我们往往会使用不同的用 ...

  3. 使用docker快速搭建Permeate渗透测试系统实践

    一.背景 笔者最近在做一场Web安全培训,其中需要搭建一套安全测试环境:在挑选渗透测试系统的时候发现permeate渗透测试系统比较满足需求,便选择了此系统:为了简化这个步骤,笔者将系统直接封装到了d ...

  4. IntelliJ IDEA快速自动生成Junit测试类

    1.背景 测试是保证代码必不可少的环节,自己构建测试方法太慢,并且命名也不规范,idea中提供了,一键构建测试结构的功能...废话不多说,直接写步骤 2.步骤 1.在需要做测试的类的当前窗口,直接按快 ...

  5. Sqlite 快速批量插入数据 测试

    public static int insertDbBatch() { string sql = ""; SQLiteConnection conn = new SQLiteCon ...

  6. python pandas  使用列表快速创建数据 用于测试

    创建数据和行append数据 >>> df = pd.DataFrame([['AA', 1.00], ['Ks', 2.00]], columns=['name', 'age']) ...

  7. Rspec: everyday-rspec实操: 第9章 快速编写测试,编写快速的测试。

    Make it work, make it right, make it fast. 测试运行的时间.应用和测试组件的增长,速度会越来越慢,目标是保持代码的readable, maintainable ...

  8. 疫情期,如何用A/B测试快速迭代你的产品?

    作者:友盟+数据科学家 杨玉莲.陆子骏 冠状病毒来袭牵动着每个人的心,但是病毒影响的不仅仅是我们的健康,也以极快的速度极深远地影响了整个移动互联网的发展.主流阵地原本在线下的需求,如医疗和生鲜电商,快 ...

  9. 移动应用开发测试工具Bugtags集成和使用教程

    前段时间,有很多APP突然走红,最终却都是樱花一现.作为一个创业团队,突然爆红是非常难得的机会.然并卵,由于没有经过充分的测试,再加上用户的激增,APP闪退.服务器数据异常等问题就被暴露出来,用户的流 ...

随机推荐

  1. 能否让APP永不崩溃—小光与我的对决

    前言 关于拦截异常,想必大家都知道可以通过Thread.setDefaultUncaughtExceptionHandler来拦截App中发生的异常,然后再进行处理. 于是,我有了一个不成熟的想法.. ...

  2. Panda 交易所热点关注:股权交易中心+区块链试点将开始

    近期,Panda 交易所注意到,中国证监会已同意北京.上海等5家区域性股权市场参与区块链建设试点工作.Panda 交易所获悉的具体情况是,北京股权交易中心曾联合其他单位共同推出区域性股权市场中介机构征 ...

  3. CF1406E 【Deleting Numbers】

    蒟蒻语 蒟蒻这次 \(CF\) 又双叒叕掉分了,\(C\) 都没有调出来. 还好再最后 \(10\) 秒钟调了下 \(E\) 块长 (块长 \(100\) => \(98\)),才没有掉得那么惨 ...

  4. 图论-zkw费用流

    图论-zkw费用流 模板 这是一个求最小费用最大流的算法,因为发明者是神仙zkw,所以叫zkw费用流(就是zkw线段树那个zkw).有些时候比EK快,有些时候慢一些,没有比普通费用流算法更难,所以学z ...

  5. stringbuilder和stringbuffer速度比较

    同样的代码,只改了类型,分别为stringbuilder和stringbuffer,只比较一下,执行引擎为hive. 当数据量为100000条,string builder耗时280秒,stringb ...

  6. 协程gevent学习

    import gevent def f1(): print(11) gevent.sleep(2) print(33) def f2(): print(22) gevent.sleep(1) prin ...

  7. STL——容器(List)list 的大小操作

    ist.size(); //返回容器中元素的个数 1 #include <iostream> 2 #include <list> 3 4 using namespace std ...

  8. C++异常之六 异常处理的基本思想

    异常处理的基本思想 C++的异常处理机制使得异常的引发和异常的处理不必在同一个函数中,这样低沉的函数可以着重解决具体问题,而不必过多的考虑异常的处理.上层调用者可以再适当的位置设计对不同类型异常的处理 ...

  9. python(iJmeter-master)接口测试程序部署实践

    记录学习性能测试过程遇到的问题 环境 安装环境如下: Windows 10 1803 VMWare Workstation 15 Pro Centos Linux release 7.9.2009(c ...

  10. Day1 字符编码及编码函数

    ord() 函数 获取字符的整数表示chr() 函数 把整数编码转换为对应字符'\十六进制编码\十六进制编码' 可以将字符的整数编码使用十六进制的方式这样写Python字符串类型为str,在内存中以u ...