Codeforce 101B. Buses(线段树or树状数组+离散化)
2 seconds
265 megabytes
standard input
standard output
Little boy Gerald studies at school which is quite far from his house. That's why he has to go there by bus every day. The way from home to school is represented by a segment of a straight line; the segment contains exactly n + 1 bus stops. All of them are numbered with integers from 0 to n in the order in which they follow from Gerald's home. The bus stop by Gerald's home has number 0 and the bus stop by the school has number n.
There are m buses running between the house and the school: the i-th bus goes from stop si to ti (si < ti), visiting all the intermediate stops in the order in which they follow on the segment. Besides, Gerald's no idiot and he wouldn't get off the bus until it is still possible to ride on it closer to the school (obviously, getting off would be completely pointless). In other words, Gerald can get on the i-th bus on any stop numbered from si to ti - 1 inclusive, but he can get off the i-th bus only on the bus stop ti.
Gerald can't walk between the bus stops and he also can't move in the direction from the school to the house.
Gerald wants to know how many ways he has to get from home to school. Tell him this number. Two ways are considered different if Gerald crosses some segment between the stops on different buses. As the number of ways can be too much, find the remainder of a division of this number by 1000000007 (109 + 7).
The first line contains two space-separated integers: n and m (1 ≤ n ≤ 109, 0 ≤ m ≤ 105). Then follow m lines each containing two integers si, ti. They are the numbers of starting stops and end stops of the buses (0 ≤ si < ti ≤ n).
Print the only number — the number of ways to get to the school modulo 1000000007 (109 + 7).
2 2
0 1
1 2
1
3 2
0 1
1 2
0
5 5
0 1
0 2
0 3
0 4
0 5
16
The first test has the only variant to get to school: first on bus number one to the bus stop number one; then on bus number two to the bus stop number two.
In the second test no bus goes to the third bus stop, where the school is positioned. Thus, the correct answer is 0.
In the third test Gerald can either get or not on any of the first four buses to get closer to the school. Thus, the correct answer is 24 = 16.
题意:有m条公交路线,问你有多少中方案从0到n,每条公交路线的描述为s,t:s为起点,t为终点,可以在除终点外的任意站上车即[s,t-1]间的站,但只能在终点下车。
分析:树状数组+DP,f[t]表示到达t站的方案数,按t对公交路线排序,对于当前的公交车,假设起点站和终点站分别为s,t,那么对于区间[s,t-1]站内上车的都可以到达t,那么查询[s,t-1]之间有的所有方案数的和可以用树状数组求得并维护。由于n>>m所以离散化。
树状数组:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=1e6+;
const ll mod=1e9+;
ll p[maxn],bit[maxn],tol;
struct node1
{
ll l,r;
}c[maxn];
bool cmp(node1 a,node1 b)
{
if(a.r!=b.r)return a.r<b.r;
return a.l<b.l;
}
ll sum(ll i)
{
ll s=;
while(i>)
{
s=(s+bit[i])%mod;
i-=i&-i;
}
return s%mod;
}
void add(ll i,ll x)
{
while(i<=tol)
{
bit[i]=(bit[i]+x)%mod;
i+=i&-i;
}
}
int main()
{
ll n,m;scanf("%lld%lld",&n,&m);
tol=;
for(int i=;i<m;i++)
{
scanf("%lld%lld",&c[i].l,&c[i].r);
p[tol++]=c[i].l;
p[tol++]=c[i].r;
}
sort(p+,p+tol+);
sort(c,c+m,cmp);
ll s=;
for(int i=;i<m;i++)
{
int l=lower_bound(p+,p+tol+,c[i].l)-p;
int r=lower_bound(p+,p+tol+,c[i].r)-p;
ll ans=;
if(c[i].l==)ans++;
ans+=sum(r-)-sum(l-);
ans=(ans+mod)%mod;
add(r,ans);
if(c[i].r==n)s=sum(r)-sum(r-);
}
printf("%lld\n",(s+mod)%mod);
return ;
}
线段树:
#include<cstdio>
#include<string.h>
#include<algorithm>
using namespace std;
#define ll long long
const int maxn=1e6+;
const ll mod=1e9+;
ll n,m,p[maxn*];
struct node1
{
ll l,r;
}c[maxn];
bool cmp(node1 a,node1 b)
{
if(a.r!=b.r)return a.r<b.r;
return a.l<b.l;
}
struct node
{
ll left,right,mid;
ll x;
}tree[maxn*];
void build(ll l,ll r,int rt)
{
tree[rt].left=l;
tree[rt].right=r;
tree[rt].mid=(l+r)>>;
if(l==r)return;
build(l,tree[rt].mid,rt<<);
build(tree[rt].mid+,r,rt<<|);
}
ll query(ll l,ll r,int rt)
{
if(l<=tree[rt].left&&r>=tree[rt].right)
return tree[rt].x%mod;
ll ans=;
if(l<=tree[rt].mid)
ans+=query(l,r,rt<<);
ans%=mod;
if(r>tree[rt].mid)
ans+=query(l,r,rt<<|);
return ans%mod;
}
void add(ll L,ll C,int rt)
{
if(tree[rt].left==tree[rt].right)
{
tree[rt].x=(tree[rt].x+C)%mod;
return;
}
if(L<=tree[rt].mid)
add(L,C,rt<<);
else
add(L,C,rt<<|);
tree[rt].x=(tree[rt<<].x+tree[rt<<|].x)%mod;
}
int main()
{
scanf("%lld%lld",&n,&m);
int tol=;
for(int i=;i<m;i++)
{
scanf("%lld%lld",&c[i].l,&c[i].r);
p[tol++]=c[i].l;
p[tol++]=c[i].r;
}
sort(p+,p+tol+);
sort(c,c+m,cmp);
build(,tol,);
ll sum=;
for(int i=;i<m;i++)
{
ll ans=;
ll l=lower_bound(p+,p+tol+,c[i].l)-p;
ll r=lower_bound(p+,p+tol+,c[i].r)-p;
if(c[i].l==)ans++;
if(r>=l)ans+=query(l,r-,);
add(r,ans,);
if(c[i].r==n)sum=query(r,r,);
}
printf("%lld\n",sum);
return ;
}
Codeforce 101B. Buses(线段树or树状数组+离散化)的更多相关文章
- POJ 2299 【树状数组 离散化】
题目链接:POJ 2299 Ultra-QuickSort Description In this problem, you have to analyze a particular sorting ...
- hdu4605 树状数组+离散化+dfs
Magic Ball Game Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- BZOJ_5055_膜法师_树状数组+离散化
BZOJ_5055_膜法师_树状数组+离散化 Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然 ...
- LightOJ 1085(树状数组+离散化+DP,线段树)
All Possible Increasing Subsequences Time Limit:3000MS Memory Limit:65536KB 64bit IO Format: ...
- 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数
题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...
- HDU5877 Weak Pair dfs + 线段树/树状数组 + 离散化
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5877 题意: weak pair的要求: 1.u是v的祖先(注意不一定是父亲) 2.val[u]*va ...
- [HDOJ4325]Flowers(树状数组 离散化)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4325 关于离散化的简介:http://blog.csdn.net/gokou_ruri/article ...
- hdu5124(树状数组+离散化)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5124 题意:有n条线段,求被覆盖到次数最多的点的次数 分析: 1.可以转化成求前缀和最大的问题:将区间 ...
- Ultra-QuickSort---poj2299 (归并排序.逆序数.树状数组.离散化)
题目链接:http://poj.org/problem?id=2299 题意就是求把数组按从小到大的顺序排列,每次只能交换相邻的两个数, 求至少交换了几次 就是求逆序数 #include<std ...
随机推荐
- Go 语言为Fibonacci函数实现Read方法
Go语言非常灵活,只要为对象实现了相应的方法就可以把他看成实现了某个接口,类似于Durk Type, 为Fibonacci实现Read方法,就可以像读取文件一样,去读取下一个Fibonacci值. 示 ...
- kubernetes 核心对象
Pods Pod是Kubernetes的基本操作单元,也是应用运行的载体.整个Kubernetes系统都是围绕着Pod展开的,比如如何部署运行Pod.如何保证Pod的数量.如何访问Pod等.另外,Po ...
- webpack 从0 手动配置
1. npm init 2. npm install -D webpack webpack-cli 3. 创建webpack入口文件( 默认 webpack.config.js 可以通过 webpac ...
- IOS 被拒 关于 iPhone running iOS 10.3.1 on Wi-Fi connected to an IPv6 network.
问题: Guideline 2.1 - Performance Thank you for your resubmission. However, we discovered one or more ...
- java 实现HTTP连接(HTTPClient)
在实习中,使用到了http连接,一直理解的很模糊,特地写个分析整理篇.分析不到位的地方请多多指教. Http 目前通用版本为 http 1.1 . Http连接大致分为2种常用的请求——GET,POS ...
- ambari2.4.2在CentOS7上的二次开发
前言:如果想安装到CentOS7,就一定要将源码在CentOS7上编译,然后安装,否则可能会出现各种问题 目录 源码结构 技术点 编译环境的搭建 安装samba 安装编译环境 整体编译 ambari ...
- 安装rackspace private cloud --5 Deployment configuration
运行Ansible playbooks之前,需要配置taget host Prerequisites . cp -r /opt/openstack-ansible/etc/openstack_depl ...
- js装饰者模式
装饰者模式是为已有的功能动态地添加更多功能的一种方式.当系统需要新功能的时候,是向旧的类中添加新的代码.这些新加的代码通常装饰了原有类的核心职责或主要行为,在主类中加入了新的字段,新的方法和新的逻辑, ...
- Codeforces 893E Counting Arrays:dp + 线性筛 + 分解质因数 + 组合数结论
题目链接:http://codeforces.com/problemset/problem/893/E 题意: 共q组数据(q <= 10^5),每组数据给定x,y(x,y <= 10^6 ...
- CSS3中的变形功能
一.变形主要值得是利用transform功能来实现文字或图片的旋转,缩放,倾斜,移动这四种处理. 1.旋转-----transform:rotate(xxdeg);( IE9以上,safari 3.1 ...