Codeforce 101B. Buses(线段树or树状数组+离散化)
2 seconds
265 megabytes
standard input
standard output
Little boy Gerald studies at school which is quite far from his house. That's why he has to go there by bus every day. The way from home to school is represented by a segment of a straight line; the segment contains exactly n + 1 bus stops. All of them are numbered with integers from 0 to n in the order in which they follow from Gerald's home. The bus stop by Gerald's home has number 0 and the bus stop by the school has number n.
There are m buses running between the house and the school: the i-th bus goes from stop si to ti (si < ti), visiting all the intermediate stops in the order in which they follow on the segment. Besides, Gerald's no idiot and he wouldn't get off the bus until it is still possible to ride on it closer to the school (obviously, getting off would be completely pointless). In other words, Gerald can get on the i-th bus on any stop numbered from si to ti - 1 inclusive, but he can get off the i-th bus only on the bus stop ti.
Gerald can't walk between the bus stops and he also can't move in the direction from the school to the house.
Gerald wants to know how many ways he has to get from home to school. Tell him this number. Two ways are considered different if Gerald crosses some segment between the stops on different buses. As the number of ways can be too much, find the remainder of a division of this number by 1000000007 (109 + 7).
The first line contains two space-separated integers: n and m (1 ≤ n ≤ 109, 0 ≤ m ≤ 105). Then follow m lines each containing two integers si, ti. They are the numbers of starting stops and end stops of the buses (0 ≤ si < ti ≤ n).
Print the only number — the number of ways to get to the school modulo 1000000007 (109 + 7).
2 2
0 1
1 2
1
3 2
0 1
1 2
0
5 5
0 1
0 2
0 3
0 4
0 5
16
The first test has the only variant to get to school: first on bus number one to the bus stop number one; then on bus number two to the bus stop number two.
In the second test no bus goes to the third bus stop, where the school is positioned. Thus, the correct answer is 0.
In the third test Gerald can either get or not on any of the first four buses to get closer to the school. Thus, the correct answer is 24 = 16.
题意:有m条公交路线,问你有多少中方案从0到n,每条公交路线的描述为s,t:s为起点,t为终点,可以在除终点外的任意站上车即[s,t-1]间的站,但只能在终点下车。
分析:树状数组+DP,f[t]表示到达t站的方案数,按t对公交路线排序,对于当前的公交车,假设起点站和终点站分别为s,t,那么对于区间[s,t-1]站内上车的都可以到达t,那么查询[s,t-1]之间有的所有方案数的和可以用树状数组求得并维护。由于n>>m所以离散化。
树状数组:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=1e6+;
const ll mod=1e9+;
ll p[maxn],bit[maxn],tol;
struct node1
{
ll l,r;
}c[maxn];
bool cmp(node1 a,node1 b)
{
if(a.r!=b.r)return a.r<b.r;
return a.l<b.l;
}
ll sum(ll i)
{
ll s=;
while(i>)
{
s=(s+bit[i])%mod;
i-=i&-i;
}
return s%mod;
}
void add(ll i,ll x)
{
while(i<=tol)
{
bit[i]=(bit[i]+x)%mod;
i+=i&-i;
}
}
int main()
{
ll n,m;scanf("%lld%lld",&n,&m);
tol=;
for(int i=;i<m;i++)
{
scanf("%lld%lld",&c[i].l,&c[i].r);
p[tol++]=c[i].l;
p[tol++]=c[i].r;
}
sort(p+,p+tol+);
sort(c,c+m,cmp);
ll s=;
for(int i=;i<m;i++)
{
int l=lower_bound(p+,p+tol+,c[i].l)-p;
int r=lower_bound(p+,p+tol+,c[i].r)-p;
ll ans=;
if(c[i].l==)ans++;
ans+=sum(r-)-sum(l-);
ans=(ans+mod)%mod;
add(r,ans);
if(c[i].r==n)s=sum(r)-sum(r-);
}
printf("%lld\n",(s+mod)%mod);
return ;
}
线段树:
#include<cstdio>
#include<string.h>
#include<algorithm>
using namespace std;
#define ll long long
const int maxn=1e6+;
const ll mod=1e9+;
ll n,m,p[maxn*];
struct node1
{
ll l,r;
}c[maxn];
bool cmp(node1 a,node1 b)
{
if(a.r!=b.r)return a.r<b.r;
return a.l<b.l;
}
struct node
{
ll left,right,mid;
ll x;
}tree[maxn*];
void build(ll l,ll r,int rt)
{
tree[rt].left=l;
tree[rt].right=r;
tree[rt].mid=(l+r)>>;
if(l==r)return;
build(l,tree[rt].mid,rt<<);
build(tree[rt].mid+,r,rt<<|);
}
ll query(ll l,ll r,int rt)
{
if(l<=tree[rt].left&&r>=tree[rt].right)
return tree[rt].x%mod;
ll ans=;
if(l<=tree[rt].mid)
ans+=query(l,r,rt<<);
ans%=mod;
if(r>tree[rt].mid)
ans+=query(l,r,rt<<|);
return ans%mod;
}
void add(ll L,ll C,int rt)
{
if(tree[rt].left==tree[rt].right)
{
tree[rt].x=(tree[rt].x+C)%mod;
return;
}
if(L<=tree[rt].mid)
add(L,C,rt<<);
else
add(L,C,rt<<|);
tree[rt].x=(tree[rt<<].x+tree[rt<<|].x)%mod;
}
int main()
{
scanf("%lld%lld",&n,&m);
int tol=;
for(int i=;i<m;i++)
{
scanf("%lld%lld",&c[i].l,&c[i].r);
p[tol++]=c[i].l;
p[tol++]=c[i].r;
}
sort(p+,p+tol+);
sort(c,c+m,cmp);
build(,tol,);
ll sum=;
for(int i=;i<m;i++)
{
ll ans=;
ll l=lower_bound(p+,p+tol+,c[i].l)-p;
ll r=lower_bound(p+,p+tol+,c[i].r)-p;
if(c[i].l==)ans++;
if(r>=l)ans+=query(l,r-,);
add(r,ans,);
if(c[i].r==n)sum=query(r,r,);
}
printf("%lld\n",sum);
return ;
}
Codeforce 101B. Buses(线段树or树状数组+离散化)的更多相关文章
- POJ 2299 【树状数组 离散化】
题目链接:POJ 2299 Ultra-QuickSort Description In this problem, you have to analyze a particular sorting ...
- hdu4605 树状数组+离散化+dfs
Magic Ball Game Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- BZOJ_5055_膜法师_树状数组+离散化
BZOJ_5055_膜法师_树状数组+离散化 Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然 ...
- LightOJ 1085(树状数组+离散化+DP,线段树)
All Possible Increasing Subsequences Time Limit:3000MS Memory Limit:65536KB 64bit IO Format: ...
- 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数
题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...
- HDU5877 Weak Pair dfs + 线段树/树状数组 + 离散化
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5877 题意: weak pair的要求: 1.u是v的祖先(注意不一定是父亲) 2.val[u]*va ...
- [HDOJ4325]Flowers(树状数组 离散化)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4325 关于离散化的简介:http://blog.csdn.net/gokou_ruri/article ...
- hdu5124(树状数组+离散化)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5124 题意:有n条线段,求被覆盖到次数最多的点的次数 分析: 1.可以转化成求前缀和最大的问题:将区间 ...
- Ultra-QuickSort---poj2299 (归并排序.逆序数.树状数组.离散化)
题目链接:http://poj.org/problem?id=2299 题意就是求把数组按从小到大的顺序排列,每次只能交换相邻的两个数, 求至少交换了几次 就是求逆序数 #include<std ...
随机推荐
- ceph安装各种报错
[ceph_deploy][ERROR ] RuntimeError: Failed to execute command: ceph-disk-activate –mark-init sysvini ...
- Nginx location指令匹配顺序规则
location匹配命令 1. “= ”,字面精确匹配, 如果匹配,则跳出匹配过程.(不再进行正则匹配) 2. “^~ ”,最大前缀匹配,如果匹配,则跳出匹配过程.(不再进行正则匹配) 3. 不带任何 ...
- 为什么可以Ping通IP地址,但Ping不通域名?
能否ping通IP地址,与能否解析域名是两回事不能ping通IP地址,说明对方禁止ICMP报文或对方没有开机等解析域名只是将域名翻译成IP地址,不论该IP地址是否能够正常访问 问题是ping域名的时候 ...
- log files of IIS
C:\inetpub\logs\LogFiles https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/m ...
- CodeForces 266E More Queries to Array...(线段树+式子展开)
开始觉得是规律题的,自以为是的推了一个规律,结果测试数据都没过....看了love神的博客才发现只是把式子展开就找到规律了.不过挺6的是我虽然想错了,但是维护的的东西没有错,只是改改(改了进两个小时好 ...
- LightOJ 1245 数学
Harmonic Number (II) Description I was trying to solve problem '1234 - Harmonic Number', I wrote the ...
- 应用程序.f/q(f了个墙)
1.20180414: 前两天,发现 CnFast不能用了,也没管它 以为过两天会好. 今天发现还是不能用,上网随便baidu下,看到个帖子:有人用加速精灵吗 现在登陆不了了 哪位大佬知道怎么回事啊[ ...
- Carrier-Grade Mirantis OpenStack (the Mirantis NFV Initiative), Part 1: Single Root I/O Virtualization (SR-IOV)
The Mirantis NFV initiative aims to create an NFV ecosystem for OpenStack, with validated hardware ...
- Android国际化-图片国际化和文本字符国际化
注意: 1.是在res目录下面,新建文件夹 2.需要国际化的文本资源和图片资源名称是一样的 图片国际化 默认:drawable-xhdpi 中文简体:drawable-zh-rCN-xhdpi(或者不 ...
- 添加语句<tx:annotation-driven transaction-manager="txManager"/>报错
在添加<tx:annotation-driven transaction-manager="txManager"/>程序之前,applicationContext.xm ...