矩阵定义:[摘自百度百科]
由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:
这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn
元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵.
基本运算:
矩阵运算在科学计算中非常重要而矩阵的基本运算包括矩阵的加法,减法,数乘,转置,共轭和共轭转置
 

加法

矩阵的加法满足下列运算律(A,B,C都是同型矩阵):
应该注意的是只有同型矩阵之间才可以进行加法[11].

减法

数乘

矩阵的数乘满足以下运算律:
矩阵的加减法和矩阵的数乘合称矩阵的线性运算[8]。

乘法

两个矩阵的乘法仅当第一个矩阵A的列数和另一个矩阵B的行数相等时才能定义。如A是m×n矩阵和B是n×p矩阵,它们的乘积C是一个m×p矩阵

  

,它的一个元素:

并将此乘积记为:

  
例如:
矩阵的乘法满足以下运算律:
结合律:

 
左分配律:

 
右分配律:

 
矩阵乘法不满足交换律
 

Python numpy

安装:

pip install numpy

使用

    # 创建数组
a = np.array([1, 2, 3, 4])
# 多维数组
b = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print a
print b
# 数组大小
print a.shape
print b.shape
# 查看类型
c = np.array(['', 22, 33])
print c.dtype
print a.dtype
# 存取方法
print a[:-1]
print a[1:2]
# 其中注意的是通过下标取值产生新的数组雨原始数组共享同一块数据空间
d = a[0:3]
print d
d[2] = 333333
print d
print a

乘积:

乘积中*和dot是不一样,*是数组元素逐个计算dot是按照矩阵来进行计算

    # 创建数组
a = np.array([[1, 2], [5, 6]])
# 多维数组
b = np.array([[1, 2], [5, 6]])
print a
print b
print "*" * 30
c = a * b
print c
print "-" * 30
d = np.dot(a, b)
print d

输出:

[[1 2]
[5 6]]
[[1 2]
[5 6]]
******************************
[[ 1 4]
[25 36]]
------------------------------
[[11 14]
[35 46]]

dot计算公式:

dot(a, b) [i , j, k, m] = sum(a[i, j, :] * b[k, :, m])

inner计算公式:

inner(a, b)[i, j, k, m] = sum(a[i, j, :] * b[k, m, :])

 

 

[机器学习基础]矩阵基础和numpy的更多相关文章

  1. SLAM入门之视觉里程计(4):基础矩阵的估计

    在上篇文章中,介绍了三位场景中的同一个三维点在不同视角下的像点存在着一种约束关系:对极约束,基础矩阵是这种约束关系的代数表示,并且这种约束关系独立与场景的结构,只依赖与相机的内参和外参(相对位姿).这 ...

  2. 【Python矩阵及其基础操作】【numpy matrix】

    一.矩阵生成 1.numpy.matrix: import numpy as np x = np.matrix([ [1, 2, 3],[4, 5, 6] ]) y = np.matrix( [1, ...

  3. SLAM入门之视觉里程计(2):两视图对极约束 基础矩阵

    在上篇相机模型中介绍了图像的成像过程,场景中的三维点通过"小孔"映射到二维的图像平面,可以使用下面公式描述: \[ x = MX \]其中,\(c\)是图像中的像点,\(M\)是一 ...

  4. 2D-2D:对极几何 基础矩阵F 本质矩阵E 单应矩阵H

    对极约束 \[ \boldsymbol{x}_{2}^{T} \boldsymbol{F} \boldsymbol{x}_{1}=\boldsymbol{0} \quad \hat{\boldsymb ...

  5. SLAM入门之视觉里程计(3):两视图对极约束 基础矩阵

    在上篇相机模型中介绍了图像的成像过程,场景中的三维点通过"小孔"映射到二维的图像平面,可以使用下面公式描述: \[ x = MX \]其中,\(c\)是图像中的像点,\(M\)是一 ...

  6. 机器学习:Jupyter Notebook中numpy的使用

    一.Jupyter Notebook的魔法命令 # 模块/方法 + ?或者help(模块/方法):查看模块/方法的解释文档: 1)%run # 机械学习中主要应用两个魔法命令:%run.%timeit ...

  7. [.net 面向对象编程基础] (3) 基础中的基础——数据类型

    [.net 面向对象编程基础] (3) 基础中的基础——数据类型 关于数据类型,这是基础中的基础. 基础..基础..基础.基本功必须要扎实. 首先,从使用电脑开始,再到编程,电脑要存储数据,就要按类型 ...

  8. [.net 面向对象编程基础] (4) 基础中的基础——数据类型转换

    [.net面向对象编程基础] (4)基础中的基础——数据类型转换 1.为什么要进行数据转换? 首先,为什么要进行数据转换,拿值类型例子说明一下, 比如:我们要把23角零钱,换成2.30元,就需要把整形 ...

  9. [.net 面向对象编程基础] (5) 基础中的基础——变量和常量

    [.net面向对象编程基础]  (5) 基础中的基础——变量和常量 1.常量:在编译时其值能够确定,并且程序运行过程中值不发生变化的量. 通俗来说,就是定义一个不能改变值的量.既然不能变动值,那就必须 ...

随机推荐

  1. 织梦dedecms 自带采集的缩略图地址后面有“/”斜杠的解决方法

    本来想偷懒在网上找一些文档去解决织梦采集缩略图地址带“/”的问题的,可是找了找发现没有人写出解决方法,只好自己动手了. 过程很复杂,找了问题的原因也是找了半天,自己一点一点的测试.最后找到了问题所在. ...

  2. C#加密解密DES字符串<转>

    using System; using System.Collections.Generic; using System.Text; using System.Security.Cryptograph ...

  3. pandas 读取excel的指定列

    不管对于read_csv还是read_excel,现在都有: usecols : int or list, default None If None then parse all columns, I ...

  4. Hbase- Hbase客户端读写数据时的路由流程

    1.客户端先到zookeeper查找hbase:meta所在的RegionServer服务器 2.去hbase:meta表查找自己所要的数据所在的region server 3.去目标region s ...

  5. 我总结的call()与apply()方法的区别

    [call()与apply()的区别]在ECMAScript中每一个函数都是function类型(是javascript的基本引用类型)的实例,具有一定的属性和方法.call()和apply()则是这 ...

  6. LeetCode OJ:Subsets(子集)

    Given a set of distinct integers, nums, return all possible subsets. Note: Elements in a subset must ...

  7. hdoj-1276-士兵队列训练问题(队列模拟)

    题意: 新兵蛋子按照两种报数规则报数: 1.1212报数,2出队 2.123123报数,3出队 没报完一轮,检查人数,不大于3,over 略坑,必须每报完一轮检查人数,最初,按照12两种顺序报完检查人 ...

  8. git常用命令收藏

    git init //初始化本地git环境 git clone XXX//克隆一份代码到本地仓库 git pull //把远程库的代码更新到工作台 git pull --rebase origin m ...

  9. Redis底层探秘(二):链表和跳跃表

    链表简介 链表提供了高效的节点重排能力,以及顺序性的节点访问方式,并且可以通过增删节点来灵活地跳转链表的长度. 作为一种常用数据结构,链表内置在很多高级的编程语言里面,因为Redis使用C语言并没有内 ...

  10. 幸运数字(数位dp)

    个人心得:数位dp处理起来是真的麻烦,本来动态规划就够头疼的了,菜的一批. 来看这个题目吧,题目在下面. 把题目变成可以求得就是求前n个数中1-n*9的情况的总和,所以用dp[i][j],表示前i个数 ...