这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛。这门课程对想要了解和初步掌握机器学习的人来说是不二的选择。这门课程涵盖了机器学习的一些基本概念和方法,同时这门课程的编程作业对于掌握这些概念和方法起到了巨大的作用。

课程地址 https://www.coursera.org/learn/machine-learning

笔记主要是简要记录下课程内容,以及MATLAB编程作业....

Regression

回归,属于有监督学习中的一种方法。该方法的核心思想是从离散的统计数据中得到数学模型,然后将该数学模型用于预测或者分类。该方法处理的数据可以是多维的。课程最初介绍了一个房屋价格的基本问题,然后引出了线性回归的解决方法,然后针对误差问题做了概率解释。

与 Classification 的区别

  Regression: to predict the continuous valued output.

  Classification: to predict the discrete valued output.

Costfuntion

求最小值,局部最优或者全局最优

Grdient Descent

在选定线性回归模型后,只需要确定参数 θ,就可以将模型用来预测。然而 θ 需要在 J(θ)最小的情况下才能确定。因此问题归结为求极小值问题,使用梯度下降法。梯度下降法最大的问题是求得有可能是全局极小值,这与初始点的选取有关。

梯度下降法是按下面的流程进行的:

1)首先对 θ 赋值,这个值可以是随机的,也可以让 θ 是一个全零的向量。

2)改变 θ 的值,使得 J(θ)按梯度下降的方向进行减少。

梯度方向由 J(θ)对 θ 的偏导数确定,由于求的是极小值,因此梯度方向是偏导数的反方向。结果为

对于本章(week2)的编程作业题如下:

Week2 任务: Linear Regression

computeCost.m

 function J = computeCost(X, y, theta)

 % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = ; % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost. h = X * theta;
E = h - y;
J = / (*m) * E' * E; % ============================================================
end

gradientDescent.m

 function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)

 % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, );
for iter = :num_iters % ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
%
h = X * theta;
E = h - y;
theta = theta - alpha / m * X' * E; % ========================================================= % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end
end

computeCostMulti.m

 h = X * theta;
E = h - y;
J = / (*m) * E' * E;

gradientDescentMulti.m

 h = X * theta;
E = h - y;
theta = theta - alpha / m * X' * E;

Andrew Ng 的 Machine Learning 课程学习 (week2) Linear Regression的更多相关文章

  1. Andrew Ng 的 Machine Learning 课程学习 (week3) Logistic Regression

    这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解 ...

  2. Andrew Ng 的 Machine Learning 课程学习 (week5) Neural Network Learning

    这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解 ...

  3. Andrew Ng 的 Machine Learning 课程学习 (week4) Multi-class Classification and Neural Networks

    这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解 ...

  4. matlab基础教程——根据Andrew Ng的machine learning整理

    matlab基础教程--根据Andrew Ng的machine learning整理 基本运算 算数运算 逻辑运算 格式化输出 小数位全局修改 向量和矩阵运算 矩阵操作 申明一个矩阵或向量 快速建立一 ...

  5. machine learning(14) --Regularization:Regularized linear regression

    machine learning(13) --Regularization:Regularized linear regression Gradient descent without regular ...

  6. Logistic回归Cost函数和J(θ)的推导----Andrew Ng【machine learning】公开课

    最近翻Peter Harrington的<机器学习实战>,看到Logistic回归那一章有点小的疑问. 作者在简单介绍Logistic回归的原理后,立即给出了梯度上升算法的code:从算法 ...

  7. [C5] Andrew Ng - Structuring Machine Learning Projects

    About this Course You will learn how to build a successful machine learning project. If you aspire t ...

  8. Machine Learning - week 2 - Multivariate Linear Regression

    Multiple Features 上一章中,hθ(x) = θ0 + θ1x,表示只有一个 feature.现在,有多个 features,所以 hθ(x) = θ0 + θ1x1 + θ2x2 + ...

  9. [Machine Learning] 单变量线性回归(Linear Regression with One Variable) - 线性回归-代价函数-梯度下降法-学习率

    单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方 ...

随机推荐

  1. jQuery之$.support.xxx

    下面这段代码来自jQuery-file-upload 9.19官方Demo $(function () { 'use strict'; // Change this to the location o ...

  2. git CVE-2014-9390 验证以及源码对比

    一 验证部分 首先在ubuntu下面建立如下工程 mkdir repo cd repo git init mkdir -p .GiT/hooks cp post-checkout .GiT/hooks ...

  3. js 操作html dom

    author:冯永贤(Tony Feng,鸡鸣星),文章整合:internet <HTML DOM> 一:js能够改变HTML DOM 里面的什么内容 JavaScript 能够改变页面中 ...

  4. Vue Study [2]: Vue Router

    Description The article for vue router. Original post link:https://www.cnblogs.com/markjiang7m2/p/10 ...

  5. go语言实战教程之 后台管理页面统计功能开发(2)

    上节内容介绍了后台管理页面统计功能开发(1),从功能介绍,到接口请求分析和归类,最后是代码设计.经过上节内容的介绍,已经将业务逻辑和开发逻辑解释清楚,本节内容侧重于编程代码实现具体的功能. 当日增长数 ...

  6. 【bzoj1853】: [Scoi2010]幸运数字 数论-容斥原理

    [bzoj1853]: [Scoi2010]幸运数字 预处理出所有幸运数字然后容斥原理 但是幸运数字是2logn个数的 直接搞会炸 所以把成倍数的处理掉 然后发现还是会T 所以数字要从大到小处理会快很 ...

  7. winform只能打开一个子窗口

    源地址:https://zhidao.baidu.com/question/1511266887807047660.html 指定弹出的子窗口为模态窗口就可以了,这样在子窗口没有关闭前,是不能操作父窗 ...

  8. Mysql INNER JOIN

    1.MySQL INNER JOIN子句将一个表中的行与其他表中的行进行匹配,并允许从两个表中查询包含列的行记录. 2.INNER JOIN子句是SELECT语句的可选部分,它出现在FROM子句之后. ...

  9. 灾后重建 Floyd

    题目背景 BBB地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响.但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车.换句话说,只有连接着两个重建完成的村庄的公路 ...

  10. redis分布式锁的使用

    一  本身自带的方法进行使用: <dependency> <groupId>redis.clients</groupId> <artifactId>je ...