\(\color{#0066ff}{ 题目描述 }\)

给定一个标号为从 \(1\) 到 \(n\) 的、有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树。

\(\color{#0066ff}{输入格式}\)

第一行两个数 \(n, m\),表示图的点和边的数量。

第二行起 mm 行,每行形如 u_i, v_i, w_iui,vi,wi,代表 u_iui 到 v_ivi 间有一条长为 w_iwi 的无向边。

\(\color{#0066ff}{输出格式}\)

输出一行一个整数,代表你的答案。

数据保证存在至少一棵生成树。

\(\color{#0066ff}{输入样例}\)

4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40

\(\color{#0066ff}{输出样例}\)

20

\(\color{#0066ff}{数据范围与提示}\)

对于 30% 的数据,满足 \(1 \leq n \leq 100, 1 \leq m \leq 1000\)

对于 97% 的数据,满足 \(1 \leq n \leq 500, 1 \leq m \leq 100000\)

对于 100% 的数据,满足 \(1 \leq n \leq 50000, 1 \leq m \leq 200000, 1 \leq w_i \leq 10000\)

\(\color{#0066ff}{题解}\)

把所有边从大到小排个序,依次加入LCT,LCT上维护边权(拆成点)

如果不成环,直接加入边,用一个变量维护LCT上的边数

如果成环了,那么显然把最大的换下来更优

用multiset维护最大最小值,每次只要是生成树就更新

#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 5e5 + 10;
const int inf = 0x7fffffff;
struct node {
node *ch[2], *fa;
int max, val, rev;
node(int max = 0, int val = 0, int rev = 0): max(max), val(val), rev(rev) { ch[0] = ch[1] = fa = NULL; }
void trn() { std::swap(ch[0], ch[1]), rev ^= 1; }
void dwn() {
if(!rev) return;
if(ch[0]) ch[0]->trn();
if(ch[1]) ch[1]->trn();
rev = 0;
}
void upd() {
max = val;
if(ch[0]) max = std::max(max, ch[0]->max);
if(ch[1]) max = std::max(max, ch[1]->max);
}
bool ntr() { return fa && (fa->ch[0] == this || fa->ch[1] == this); }
bool isr() { return fa->ch[1] == this; }
void clr() {
if(ch[0]) ch[0]->fa = NULL;
if(ch[1]) ch[1]->fa = NULL;
ch[0] = ch[1] = NULL;
}
}pool[maxn];
struct EDGE {
int x, y, z;
friend bool operator < (const EDGE &a, const EDGE &b) { return a.z > b.z; }
}e[maxn];
int ans = inf, num;
std::multiset<int> s;
int n, m;
void rot(node *x) {
node *y = x->fa, *z = y->fa;
bool k = x->isr(); node *w = x->ch[!k];
if(y->ntr()) z->ch[y->isr()] = x;
(x->ch[!k] = y)->ch[k] = w;
(y->fa = x)->fa = z;
if(w) w->fa = y;
y->upd(), x->upd();
}
void splay(node *o) {
static node *st[maxn];
int top;
st[top = 1] = o;
while(st[top]->ntr()) st[top + 1] = st[top]->fa, top++;
while(top) st[top--]->dwn();
while(o->ntr()) {
if(o->fa->ntr()) rot(o->isr() ^ o->fa->isr()? o : o->fa);
rot(o);
}
}
node *find(node *o) {
while(o->dwn(), o->max != o->val) {
if(o->ch[0] && o->ch[0]->max == o->max) o = o->ch[0];
else o = o->ch[1];
}
return o;
}
void access(node *x) {
for(node *y = NULL; x; x = (y = x)->fa)
splay(x), x->ch[1] = y, x->upd();
}
void makeroot(node *x) { access(x), splay(x), x->trn(); }
node *findroot(node *o) {
access(o), splay(o);
while(o->dwn(), o->ch[0]) o = o->ch[0];
return o;
}
void link(node *x, node *y) { makeroot(x), x->fa = y; }
void add(node *x, node *y, node *o) {
if(findroot(x) == findroot(y)) {
makeroot(x), access(y), splay(y);
num--;
node *p = find(y);
s.erase(s.find(p->max));
splay(p);
p->clr(), p->upd();
}
num++;
s.insert(o->val);
if(num == n - 1 && num) {
std::multiset<int>::iterator be = s.begin(), ed = s.end();
ed--;
ans = std::min(ans, *ed - *be);
}
link(x, o), link(y, o);
}
int main() {
n = in(), m = in();
for(int i = 1; i <= m; i++) e[i].x = in(), e[i].y = in(), e[i].z = in();
std::sort(e + 1, e + m + 1);
for(int i = 1; i <= m; i++) {
if(e[i].x == e[i].y) continue;
pool[n + i].val = e[i].z;
pool[n + i].upd();
add(pool + e[i].x, pool + e[i].y, pool + n + i);
}
printf("%d", ans);
return 0;
}

P4234 最小差值生成树 LCT维护边权的更多相关文章

  1. 洛谷 P4234 最小差值生成树(LCT)

    题面 luogu 题解 LCT 动态树Link-cut tree(LCT)总结 考虑先按边权排序,从小到大加边 如果构成一颗树了,就更新答案 当加入一条边,会形成环. 贪心地想,我们要最大边权-最小边 ...

  2. Luogu 4234 最小差值生成树 - LCT 维护链信息

    Solution 将边从小到大排序, 添新边$(u, v)$时 若$u,v$不连通则直接添, 若连通则 把链上最小的边去掉 再添边. 若已经加入了 $N - 1$条边则更新答案. Code #incl ...

  3. P4234 最小差值生成树

    题目 P4234 最小差值生成树 做法 和这题解法差不多,稍微变了一点,还不懂就直接看代码吧 \(update(2019.2):\)还是具体说一下吧,排序,直接加入,到了成环情况下,显然我们要把此边代 ...

  4. 洛谷.4234.最小差值生成树(LCT)

    题目链接 先将边排序,这样就可以按从小到大的顺序维护生成树,枚举到一条未连通的边就连上,已连通则(用当前更大的)替换掉路径上最小的边,这样一定不会更差. 每次构成树时更新答案.答案就是当前边减去生成树 ...

  5. 洛谷P4234 最小差值生成树(lct动态维护最小生成树)

    题目描述 给定一个标号为从 11 到 nn 的.有 mm 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式:   第一行两个数 n, mn,m ,表示图的点和边的数量. ...

  6. 【Luogu】P4234最小差值生成树(LCT)

    题目链接 能把LCT打得每个函数都恰有一个错误也是挺令我惊讶的. 本题使用LCT维护生成树,具体做法是对原图中的每个边建一个点,然后连边的时候相当于是将边的起点跟“边”这个点连起来,边的终点也跟它连起 ...

  7. 洛谷P4234 最小差值生成树(LCT,生成树)

    洛谷题目传送门 和魔法森林有点像,都是动态维护最小生成树(可参考一下Blog的LCT总结相关部分) 至于从小到大还是从大到小当然无所谓啦,我是从小到大排序,每次枚举边,还没连通就连,已连通就替换环上最 ...

  8. 【刷题】洛谷 P4234 最小差值生成树

    题目描述 给定一个标号为从 \(1\) 到 \(n\) 的.有 \(m\) 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式: 第一行两个数 \(n, m\) ,表示图的 ...

  9. Luogu P4234 最小差值生成树

    题意 给定一个 \(n\) 个点 \(m\) 条边的有权无向图,求出原图的一棵生成树使得该树上最大边权与最小边权的差值最小. \(\texttt{Data Range:}1\leq n\leq 5\t ...

随机推荐

  1. AllowsTransparency和WebBrowser兼容性问题解决方案

    AllowsTransparency和System.Windows.Controls.WebBrowser兼容性问题,能看这篇文章,所以原因也不用多说:最根本的就是因为MS对win32底层的WebBr ...

  2. Windows Backdoor Tips

    名称:在用户登录时,运行这些程序 位置: Computer Configuration\\Policies\\Administrative Templates\\System\\Logon\\ 中 d ...

  3. MySQL组合索引最左匹配原则

    几个重要的概念 1.对于mysql来说,一条sql中,一个表无论其蕴含的索引有多少,但是有且只用一条. 2.对于多列索引来说(a,b,c)其相当于3个索引(a),(a,b),(a,b,c)3个索引,又 ...

  4. SpringMVC工作原理图解

    SpringMVC的工作原理图: SpringMVC流程 1.  用户发送请求至前端控制器DispatcherServlet. 2.  DispatcherServlet收到请求调用HandlerMa ...

  5. DAY17-Django之logging

    LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'standard': { 'format': ...

  6. DAY13-前端之BOM和DOM

    前戏 到目前为止,我们已经学过了JavaScript的一些简单的语法.但是这些简单的语法,并没有和浏览器有任何交互. 也就是我们还不能制作一些我们经常看到的网页的一些交互,我们需要继续学习BOM和DO ...

  7. java在Win7 64位 获取客户端的IP,MAC,计算机名

    package com.javaweb.util; import java.io.IOException; import java.io.InputStreamReader; import java. ...

  8. adb device offline 解决办法

    当电脑中的豌豆荚之类的应用打开的状态下 adb devices 显示连接状态 关闭手机助手之后,adb devices总显示 device offline 后来发现sdk  platform-tool ...

  9. ListView的ScrollListener

    @Override public void onScrollStateChanged(AbsListView paramAbsListView, int paramInt) { //当屏幕停止滚动时为 ...

  10. springmvc 注解式开发 处理器方法的返回值

    1.返回void -Ajax请求 后台: 前台: 返回object中的数值型: 返回object中的字符串型: 返回object中的自定义类型对象: 返回object中的list: 返回object中 ...