一直都说学莫队,直到现在才学,训练的时候就跪了   T_T,其实挺简单的感觉。其实训练的时候也看懂了,一知半解,就想着先敲。(其实这样是不好的,应该弄懂再敲,以后要养成这个习惯)

前缀异或也很快想出来,结果没弄好边界,也是对前缀异或和莫队的不熟练。

CF 的E题,给定区间中有多少子区间个数异或等于k

容易想到的是预处理前缀异或值,求解区间[L, R]的贡献,相当于在前缀异或值[L - 1, R]中任取两个数,异或值等于k

知道区间[L, R]的贡献,可以O(1)知道[L - 1, R]和[L, R + 1]的贡献,就可以用莫队了

把询问分块,每块大小sqrtn,然后块内按右端点排序,然后two pointer维护即可。

因为块内的大小是sqrtn,然后每次移动只会移动sqrtn的大小。复杂度是nsqrtn

两题都是莫队的一个应用,离线查询区间

#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;
const int maxn = + ;
struct Query {
int L, R, id;
}node[maxn];
int a[maxn];
int n, m, k, magic;
bool cmp(struct Query a, struct Query b) {
if (a.L/magic != b.L/magic) return a.L/magic < b.L/magic;
else return a.R < b.R;
}
LL ans[maxn];
LL num[maxn];
void calc() {
LL temp = ;
int L = , R = ;
num[] = ;
for (int i = ; i <= m; ++i) {
while (R < node[i].R) {
++R;
temp += num[a[R] ^ k];
num[a[R]]++;
}
while (R > node[i].R) { // differ sqrt
num[a[R]]--;
temp -= num[a[R] ^ k];
--R;
}
while (L < node[i].L) {
num[a[L - ]]--;
temp -= num[a[L - ] ^ k];
++L;
}
while (L > node[i].L) {
--L;
temp += num[a[L - ] ^ k];
num[a[L - ]]++;
}
ans[node[i].id] = temp;
}
}
void work() {
scanf("%d%d%d", &n, &m, &k);
for (int i = ; i <= n; ++i) {
scanf("%d", a + i);
a[i] ^= a[i - ];
// printf("%d ", a[i]);
}
magic = (int)sqrt(n);
for (int i = ; i <= m; ++i) {
scanf("%d%d", &node[i].L, &node[i].R);
node[i].id = i;
}
sort(node + , node + + m, cmp);
calc();
for (int i = ; i <= m; ++i) {
cout << ans[i] << endl;
}
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
work();
return ;
}
#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;
const int maxn = 5e5 + ;
struct Query {
int L, R, id;
LL a, b;
void init() {
if (a != ) {
LL t = __gcd(a, b);
a /= t, b /= t;
} else b = ;
}
}node[maxn], ans[maxn];
int n, m, magic;
int a[maxn];
LL num[maxn];
bool cmp(struct Query a, struct Query b) {
if (a.L/magic != b.L/magic) return a.L/magic < b.L/magic;
else return a.R < b.R;
}
void work() {
scanf("%d%d", &n, &m);
for (int i = ; i <= n; ++i) {
scanf("%d", a + i);
}
for (int i = ; i <= m; ++i) {
scanf("%d%d", &node[i].L, &node[i].R);
node[i].id = i;
}
magic = sqrt(n);
sort(node + , node + + m, cmp);
int L = , R = ;
LL res = ;
for (int i = ; i <= m; ++i) {
while (R < node[i].R) {
++R;
res -= num[a[R]] * num[a[R]] - num[a[R]];
num[a[R]]++;
res += num[a[R]] * num[a[R]] - num[a[R]];
}
while (R > node[i].R) { //不同块之间才会出现
res -= num[a[R]] * num[a[R]] - num[a[R]];
num[a[R]]--;
res += num[a[R]] * num[a[R]] - num[a[R]];
R--;
}
while (L < node[i].L) { //每个块之间只是按照R排序的
res -= num[a[L]] * num[a[L]] - num[a[L]];
num[a[L]]--;
res += num[a[L]] * num[a[L]] - num[a[L]];
L++;
}
while (L > node[i].L) {
--L;
res -= num[a[L]] * num[a[L]] - num[a[L]];
num[a[L]]++;
res += num[a[L]] * num[a[L]] - num[a[L]];
}
ans[node[i].id].a = res, ans[node[i].id].b = 1LL * (node[i].R - node[i].L + ) * (node[i].R - node[i].L);
}
for (int i = ; i <= m; ++i) {
ans[i].init();
printf("%lld/%lld\n", ans[i].a, ans[i].b);
}
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
work();
return ;
}

E. XOR and Favorite Number 莫队 2038: [2009国家集训队]小Z的袜子(hose)的更多相关文章

  1. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  2. 莫队算法 2038: [2009国家集训队]小Z的袜子(hose)

    链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2038 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 ...

  3. Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 5763  Solved: 2660[Subm ...

  4. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )

    莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...

  5. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 9894  Solved: 4561[Subm ...

  6. 2038: [2009国家集训队]小Z的袜子(hose) (莫队算法)

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 专题练习: http://acm.hust.edu.cn/vjudge/conte ...

  7. 莫队算法 BOJ 2038 [2009国家集训队]小Z的袜子(hose)

    题目传送门 /* 莫队算法:求出[l, r]上取出两只相同袜子的个数. 莫队算法是离线处理一类区间不修改查询类问题的算法.如果你知道了[L,R]的答案,可以在O(1)的时间下得到 [L,R-1]和[L ...

  8. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7676  Solved: 3509[Subm ...

  9. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) 分块

    分块大法好 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MB Submit: 2938  Solved: 13 ...

随机推荐

  1. 第二次C语言实验报告

    #一.设计题目,设计思路,实现方法 ##设计题目 15-10 找最长的字符串,14-5 指定位置输出字符串,13-6 数组循环右移,12-5 查找指定字符,11-5 打印杨辉三角. ##设计思路 15 ...

  2. 机器学习:Jupyter Notebook中Matplotlib的使用

    一.matplotlib绘制折线图 matplotlib绘图的实质是折线图,将所有的点用直线连接起来,由于距离比较密,看起来像是个平滑的曲线: import matplotlib as mpl:加载m ...

  3. 第 1 课 Go 简介

    (课程地址: http://study.163.com/course/courseLearn.htm?courseId=306002&from=study#/learn/video?lesso ...

  4. java基础知识(11)---多线程

    多线程: 进程:正在进行中的程序.其实进程就是一个应用程序运行时的内存分配空间. 线程:其实就是进程中一个程序执行控制单元,一条执行路径.进程负责的是应用程序的空间的标示.线程负责的是应用程序的执行顺 ...

  5. 实现oracle分页---3种方法--

    oracle的分页一共有三种方式 方法一 根据rowid来分 SELECT * FROM EMP WHERE ROWID IN (SELECT RID FROM (SELECT ROWNUM RN, ...

  6. JavaScript权威指南读书笔记【第一章】

    第一章 JavaScript概述 前端三大技能: HTML: 描述网页内容 CSS: 描述网页样式 JavaScript: 描述网页行为 特点:动态.弱类型.适合面向对象和函数式编程的风格 语法源自J ...

  7. Delegate Action<T in> Func<T in,out Tresult> Predicate<T>

    action<T> 和  func<T> 都是delegate的简写形式,其中T为可以接受的参数类型 action<T> 指那些只有输入参数,没有返回值 Deleg ...

  8. 菜鸟攻城狮3(Holle World)

    1.创建一个HolleWorld.java文本文件 2.代码:public class HolleWorld { public static void main(String[] args) { Sy ...

  9. Ubuntu 使用 heirloom-mail 调用外部邮箱 SMTP 服务器发送邮件

    使用本地服务发邮件,经常被过滤掉而且占用资源,发送成功率不高.所以使用外部SMTP服务器发送邮件成为了需求. SMTP认证的目的是为了使用户避免受到垃圾邮件的侵扰,简单地说就是要求必须在提供了账户名和 ...

  10. 如何使用Hadoop的Partitioner

    如何使用Hadoop的Partitioner 博客分类: Hadoop hadooppartition Hadoop里面的MapReduce编程模型,非常灵活,大部分环节我们都可以重写它的API,来灵 ...