Manacher's Algorithm针对的是最长回文子串问题。对于此问题,最直接的方法是遍历每一个元素,遍历过程中以每一个字符为中心向两边扩展以寻找此字符为中心的最长回文子串。复杂度O(n2)。Manacher算法将时间复杂度降至O(n),关键点在于将奇偶字串统一成奇数字串。

  方法是在每一个字符的左右都加上一个特殊字符,如'#'

  ”abccba" -> "#a#b#c#c#b#a#"

  "abcba"  -> "#a#b#c#b#a#"

  对于长度为n的字符串,需添加 n+1 个特殊字符,则新字符串长度为 2n+1。从而解决了奇偶字串分情况判断问题。

  假设原字符串为 str,添加特殊字符串后的新字符串为 trans,设立长度与 trans 相同的一个数组 p,p[i] 代表以 trans[i] 为中心的最长回文字串的半径,例如对于trans = "#a#b#c#", p[2] = 2(”#a#“), p[3] = 1(”#“)。  

  trans :# 1 # 2 # 2 # 1 # 2 # 2 #
  p       :1 2 1 2 5 2 1 6 1 2 3 2 1

  p 数组的一个性质是 p[i] - 1 即是以 trans[i](trans[i] 为原字符串中元素) 为中心的最长回文字串在原字符串S中的长度。证明:首先在转换得到的字符串 trans 中,所有的回文字串的长度都为奇数,那么对于以 trans[i] 为中心的最长回文字串,其长度就为 2*p[i]-1 ,经过观察可知,trans 中所有的回文子串,其中分隔符的数量一定比其他字符的数量多1,也就是有 p[i] 个分隔符,剩下 p[i]-1 个字符来自原字符串,所以该回文串在原字符串中的长度就为 p[i]-1。

  因为添加的特殊字符也需要搜索其最长回文字串,那么为了避免复杂的边界讨论,需要在字符串首尾各添加与之前添加的特殊字符不同的另一特殊字符作为边界。(通常只在首部添加,尾部不需要添加的原因是字符串的结尾为 '\0' ,相当于已经加过了。所以如果在某种情况下字符串没有默认的 '\0'结尾,那么需要人为的添加一个特殊字符)

  添加两个辅助变量,mx 和 id。mx是目前最长回文字串能延伸的最右位置。id 为 最长回文字串的对称轴所在位置。

  1. 当 mx > i

   最长回文字串为 (trans[2 * id - mx], trans[mx]).  i 在此最大回文字串中,j 为 i 关于 id 的对称点

    1) mx - i > p[j]

                    

    

        当 mx - i > p[j],说明 p[i] = p[j] = p[2*id - i]。因为 j 是 i 关于 id 的对称点,既然 以 j 为中心的最长回文字串都在 以 id 为中心的回文字串中,那么 以 i 为中心的回文字串也应该在以 id 为中心的回文字串中。假设 以 j 为中心的最长回文字串左端点为 begin,右端点为 end,那么由于 mx - i > p[j],所以 j - mx > p[j], 所以 begin > mx的对称点,end < id。相同的,由于以 i 为中心的回文字串也应该在 (id,mx)范围内,因为 i 和 j 都在回文串(mx对称点, mx)内,那么(mx, j)与(i,mx)相同。所以 p[i] = p[j]

    2) mx - i <= p[j]

      

        当 mx - i <= p[j] 时,以 j 为中心的回文子串不一定完全包含于以 id 为中心的回文子串中,但是基于对称性可知,图中两个绿框所包围的部分是相同的,也就是说以i 为中心的回文子串,其向右至少会扩展到 mx 的位置,也就是说 P[i] >= mx - i。至于 mx 之后的部分是否对称,只能通过遍历得知了。

  2. 当 mx <= i

    说明以 i 为对称轴的回文串还没有任何一个部分被访问过,于是只能从 i 的左右两边开始尝试扩展了,当左右两边字符不同,或者到达字符串边界时停止。然后更新 mx 和 id 。

  最长回文子串对应原串中的位置:l = (i - p[i])/2; r = (i + p[i])/2 - 2;

  

 #include <iostream>
#include <string.h>
#include <stdio.h> using namespace std;
const int N=<<; char T[N]; //原字符串
char S[N]; //转换后的字符串
int R[N]; //回文半径 void Init(char *T)
{
S[] = '$';
int len = strlen(T);
for(int i = ; i <= len; i++)
{
S[*i + ] = '#';
S[*i + ] = T[i];
}
} void Manacher(char *S)
{
int k = ,mx = ;
int len = strlen(S);
for(int i = 1; i < len; i++)
{
if(mx > i)
R[i] = R[*k - i] < mx - i? R[*k-i] : mx-i;
else
R[i] = ;
while(S[i + R[i]] == S[i - R[i]])
R[i]++;
if(R[i] + i > mx)
{
mx = R[i] + i;
k = i;
}
}
} int main()
{
while(~scanf("%s", T))
{
Init(T);
Manacher(S);
int len = strlen(S);
int ans = ;
for(int i = ; i<len; i++)
ans = R[i] > ans? R[i] : ans;
printf("%d\n", ans - );
}
return ;
}

转自:链接 ,链接

 注意:题目中的S[i + R[i]] == S[i - R[i]]实际上已经属于越界访问,但由于语言和编译器的不同,对于越界问题处理也不同。

【算法总结】Manacher's Algorithm的更多相关文章

  1. 什么是马拉车算法(Manacher's Algorithm)?

    提出问题 最长回文子串问题:给定一个字符串,求它的最长回文子串长度. 如果一个字符串正着读和反着读是一样的,那它就是回文串.如a.aa.aba.abba等. 暴力解法 简单粗暴:找到字符串的所有子串, ...

  2. 马拉车算法(Manacher's Algorithm)

    这是悦乐书的第343次更新,第367篇原创 Manacher's Algorithm,中文名叫马拉车算法,是一位名叫Manacher的人在1975年提出的一种算法,解决的问题是求最长回文子串,神奇之处 ...

  3. Manacher's Algorithm 马拉车算法

    这个马拉车算法Manacher‘s Algorithm是用来查找一个字符串的最长回文子串的线性方法,由一个叫Manacher的人在1975年发明的,这个方法的最大贡献是在于将时间复杂度提升到了线性,这 ...

  4. Manacher's Algorithm(马拉车算法)

    ## 背景 该算法用于求字符串的最长回文子串长度. ## 参考文章 >[最长回文子串——Manacher 算法](https://segmentfault.com/a/1190000003914 ...

  5. Manacher's Algorithm 马拉车算法(最长回文串)

    这个马拉车算法Manacher‘s Algorithm是用来查找一个字符串的最长回文子串的线性方法,由一个叫Manacher的人在1975年发明的,这个方法的最大贡献是在于将时间复杂度提升到了线性,这 ...

  6. Manacher's algorithm

    Manacher's algorithm 以\(O(n)\)的线性时间求一个字符串的最大回文子串. 1. 预处理 一个最棘手的问题是需要考虑最长回文子串的长度为奇数和偶数的情况.我们通过在任意两个字符 ...

  7. Manacher’s Algorithm (神啊)

    (转载自)http://blog.csdn.net/hopeztm/article/details/7932245 这里描述了一个叫Manacher’s Algorithm的算法. 算法首先将输入字符 ...

  8. Hash 算法与 Manacher 算法

    目录 前言 简单介绍 简述 Hash 冲突 离散化 基本结构 普通 Hash 简述 例题 字符串 Hash 简单介绍 核心思想 基本运算 二维字符串 Hash 例题 兔子与兔子 回文子串的最大长度 后 ...

  9. SHA1 安全哈希算法(Secure Hash Algorithm)

    安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准 (Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signatu ...

随机推荐

  1. 九度OJ 1183:守形数 (数字特性)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3815 解决:2005 题目描述: 守形数是这样一种整数,它的平方的低位部分等于它本身. 比如25的平方是625,低位部分是25,因此25是 ...

  2. mongo explain分析详解

    1 为什么要执行explain,什么时候执行 explain的目的是将mongo的黑盒操作白盒化. 比如查询很慢的时候想知道原因. 2 explain的三种模式 2.1 queryPlanner 不会 ...

  3. hibernate多对多关系配置

    一.创建用户,角色实体类. 一名用户可以有多个角色.一个角色可以对于多名用户. 用户实体类 public class User { private int uId; private String uN ...

  4. Java之线程池(二)

    关于线程和线程池的学习,我们可以从以下几个方面入手: 第一,什么是线程,线程和进程的区别是什么 第二,线程中的基本概念,线程的生命周期 第三,单线程和多线程 第四,线程池的原理解析 第五,常见的几种线 ...

  5. 使用nginx进行负载均衡

    nginx主要用于1:请求分流 2:负载均衡.用在大型系统(集群)上,在单机上体现不出优势.  本实例在windows环境下进行.  一.安装nginx  1.下载nginx1.8.0版 2.解压至1 ...

  6. PAT 天梯赛 L2-017. 人以群分 【排序】

    题目链接 https://www.patest.cn/contests/gplt/L2-017 思路 第一个条件是 人群的规模尽可能接近 那么 N 为偶数的时候 就是 一半 一半 N 为奇数的时候 就 ...

  7. Hadoop2.x + eclipse 插件配置

    http://blog.csdn.net/u012874209/article/details/52105304 搭建集群那些就不用说了,主要有几个关键的地方需要注意(自己的Hadoop版本是2.5. ...

  8. Android蓝牙开发浅析【转】

    本文转载自:http://blog.csdn.net/geekdonie/article/details/7487761 由于近期正在开发一个通过蓝牙进行数据传递的模块,在参考了有关资料,并详细阅读了 ...

  9. Vim 的命令模式转插入模式

    一.在命令模式输入下面的快捷方式: i 在当前光标前插入字符: I 在当前行行首插入字符: a 在当前光标后插入字符: A 在当前行行尾插入字符: o 在当前行下面另起一新行: O 在当前行上面另起一 ...

  10. 也来谈幂等和CAS

    什么是幂等? 一个方法,不管你执行多少次,保证执行的结果总是相同的.这种方法或者服务就是幂等的. 什么是CAS? CAS是Compare And Set的缩写,顾名思义,就是先比较再设置,这种方式避免 ...