ID3和C4.5、CART
CART连续属性参考C4.5的离散化过程,区别在于CART算法中要以GiniGain最小作为分界点选取标准。是否需要修正?处理过程为:
先把连续属性转换为离散属性再进行处理。虽然本质上属性的取值是连续的,但对于有限的采样数据它是离散的,如果有N条样本,那么我们有N-1种离散化的方法:<=vj的分到左子树,>vj的分到右子树。计算这N-1种情况下最大的信息增益率。另外,对于连续属性先进行排序(升序),只有在决策属性(即分类发生了变化)发生改变的地方才需要切开,这可以显著减少运算量。
(1) 对特征的取值进行升序排序
(2) 两个特征取值之间的中点作为可能的分裂点,将数据集分成两部分,计算每个可能的分裂点的GiniGain。优化算法就是只计算分类属性发生改变的那些特征取值
(3)选择GiniGain最小的分裂点作为该特征的最佳分裂点(注意,若修正则此处需对最佳分裂点的Gini Gain减去log2(N-1)/|D|(N是连续特征的取值个数,D是训练数据数目)
实现连续特征数据集划分的Python程序为(采用Numpy matrix,连续特征取值就可以省略排序这一步了):
- def binSplitDataSet(dataSet, feature, value):
- mat0 = dataSet[nonzero(dataSet[:,feature] > value)[0],:][0]
- mat1 = dataSet[nonzero(dataSet[:,feature] <= value)[0],:][0]
- return mat0,mat1
其中dataset为numpy matrix, feature为dataset连续特征在dataset所有特征中的index,value即为feature的一个取值。
必须注意的是:根据离散特征分支划分数据集时,子数据集中不再包含该特征(因为每个分支下的子数据集该特征的取值就会是一样的,信息增益或者Gini Gain将不再变化);而根据连续特征分支时,各分支下的子数据集必须依旧包含该特征(当然,左右分支各包含的分别是取值小于、大于等于分裂值的子数据集),因为该连续特征再接下来的树分支过程中可能依旧起着决定性作用。
信息增益函数对于那些可能产生多分支输出的测试倾向于产生大的函数值,但是输出分支多并不表示该测试对未知的对象具有更好的预测效果.信息增益率函数可以弥补这个缺陷.然而,信息增益率函数也有它的缺陷.如果划分的信息熵值非常小,信息增益率将会不稳定.因此,C4.5系统中引入一个限制来解决这个问题:待选测试的信息增益值不能小于所有的检测过的测试的平均信息增益值.然而这个限制有其负面的影响.如果属性集中存在无关属性,即便该属性没有被选为测试属性,都将影响信息增益率的效果.因为引进的无关属性会降低测试的信息增益的平均值,所以一些具有高信息增益率而低信息增益的属性将成为最优的测试属性.这种情况就不会在使用信息增益函数的决策树中出现.
因此,信息增益函数和信息增益率函数各有利弊.实际应用说明信息增益率函数比信息增益函数更健壮,能稳定地选择好的测试.
ID3和C4.5、CART的更多相关文章
- ID3、C4.5、CART、RandomForest的原理
决策树意义: 分类决策树模型是表示基于特征对实例进行分类的树形结构.决策树可以转换为一个if_then规则的集合,也可以看作是定义在特征空间划分上的类的条件概率分布. 它着眼于从一组无次序.无规则的样 ...
- 决策树模型 ID3/C4.5/CART算法比较
决策树模型在监督学习中非常常见,可用于分类(二分类.多分类)和回归.虽然将多棵弱决策树的Bagging.Random Forest.Boosting等tree ensembel 模型更为常见,但是“完 ...
- ID3、C4.5、CART决策树介绍
决策树是一类常见的机器学习方法,它可以实现分类和回归任务.决策树同时也是随机森林的基本组成部分,后者是现今最强大的机器学习算法之一. 1. 简单了解决策树 举个例子,我们要对”这是好瓜吗?”这样的问题 ...
- 机器学习总结(八)决策树ID3,C4.5算法,CART算法
本文主要总结决策树中的ID3,C4.5和CART算法,各种算法的特点,并对比了各种算法的不同点. 决策树:是一种基本的分类和回归方法.在分类问题中,是基于特征对实例进行分类.既可以认为是if-then ...
- 决策树(ID3、C4.5、CART)
ID3决策树 ID3决策树分类的根据是样本集分类前后的信息增益. 假设我们有一个样本集,里面每个样本都有自己的分类结果. 而信息熵可以理解为:“样本集中分类结果的平均不确定性”,俗称信息的纯度. 即熵 ...
- 决策树之ID3,C4.5及CART
决策树的基本认识 决策树学习是应用最广的归纳推理算法之一,是一种逼近离散值函数的方法,年,香农引入了信息熵,将其定义为离散随机事件出现的概率,一个系统越是有序,信息熵就越低,反之一个系统越是混乱,它 ...
- 机器学习算法总结(二)——决策树(ID3, C4.5, CART)
决策树是既可以作为分类算法,又可以作为回归算法,而且在经常被用作为集成算法中的基学习器.决策树是一种很古老的算法,也是很好理解的一种算法,构建决策树的过程本质上是一个递归的过程,采用if-then的规 ...
- 2. 决策树(Decision Tree)-ID3、C4.5、CART比较
1. 决策树(Decision Tree)-决策树原理 2. 决策树(Decision Tree)-ID3.C4.5.CART比较 1. 前言 上文决策树(Decision Tree)1-决策树原理介 ...
- 决策树 ID3 C4.5 CART(未完)
1.决策树 :监督学习 决策树是一种依托决策而建立起来的一种树. 在机器学习中,决策树是一种预测模型,代表的是一种对象属性与对象值之间的一种映射关系,每一个节点代表某个对象,树中的每一个分叉路径代表某 ...
- 决策树(上)-ID3、C4.5、CART
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解决策树): 1.https://zhuanlan.zhihu.com/p/85731206 2.https://zhuanla ...
随机推荐
- 3d Max 2018安装失败怎样卸载3dsmax?错误提示某些产品无法安装
AUTODESK系列软件着实令人头疼,安装失败之后不能完全卸载!!!(比如maya,cad,3dsmax等).有时手动删除注册表重装之后还是会出现各种问题,每个版本的C++Runtime和.NET f ...
- Unity String 转换成 Vector3
- Android 中实现分享和第三方登陆---以新浪微博为例
第三方登陆和分享功能在目前大部分APP中都有,分享功能可以将自己觉得有意义的东西分享给身边的朋友,而第三方登陆可以借助已经有巨大用户基础的平台(如QQ和新浪微博)的账号,让用户在使用自己APP的时候不 ...
- MATLAB矩阵操作和算术运算符
矩阵的表示 矩阵之间用空格或者是逗号间隔 矩阵可以拼接(可以用矩阵拼接) 实部矩阵和虚部矩阵构成复数矩阵,一一对应. 冒号表达式: 格式: e1:e2:e3 e1表示初始值 e2表示步长 e ...
- 利用Serv-U搭建FTP服务器
以前在学校的时候,学校的整个宿舍楼都是在一个局域网中,经常有人用个人电脑搭个网站或者FTP啊什么的,主要是进行一些影视资源的传播活动.不乏 有些资源充沛的有志青年利用业余时间翻译某岛国影视资源,利用局 ...
- Git GUI基本操作
一.Git GUI基本操作 1.版本库初始化 gitpractise文件夹就变成了Git可以管理的仓库,目录下多了一个.git文件夹,此目录是Git用于管理版本库的,不要擅自改动里面的文件,这样会破坏 ...
- 动态LINQ(Lambda表达式)构建
using System; using System.Collections.Generic; using System.Linq; using System.Linq.Expressions; us ...
- 集成Springboot+MyBatis+JPA
1.前言 Springboot最近可谓是非常的火,本人也在项目中尝到了甜头.之前一直使用Springboot+JPA,用了一段时间发现JPA不是太灵活,也有可能是我不精通JPA,总之为了多学学Spri ...
- [C#]关于Distinct与重写IEqualityComparer时得知道的二三事
我们在想对一个可枚举的对象集合进行去重操作时,一般第一个想到的就是就是Linq的Distinct方法. 先定义一个类,然后使用Distinct方法去重 class Man { public int A ...
- 【起航计划 012】2015 起航计划 Android APIDemo的魔鬼步伐 11 App->Activity->Save & Restore State onSaveInstanceState onRestoreInstanceState
Save & Restore State与之前的例子Android ApiDemo示例解析(9):App->Activity->Persistent State 实现的UI类似,但 ...