传送门

话说谁能告诉我矩阵怎么用latex表示……

差不多就这样

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
ll n,m,p,q,a1,a2;
struct Matrix{
ll g[][];
Matrix(){memset(g,,sizeof(g));}
Matrix(int Arr[][]){
for(int i=;i<;++i) for(int j=;j<;++j)
g[i][j]=Arr[i][j];
}
inline Matrix operator *(Matrix b){
Matrix ans;
for(int i=;i<;++i)
for(int j=;j<;++j)
for(int k=;k<;++k)
(ans.g[i][j]+=g[i][k]*b.g[k][j])%=m;
return ans;
}
};
int main(){
scanf("%lld%lld%lld%lld%lld%lld",&p,&q,&a1,&a2,&n,&m);
if(n==) return printf("%lld\n",a1),;
if(n==) return printf("%lld\n",a2),;
n-=;
int a[][]={{a2,a1},{,}};
int b[][]={{p,},{q,}};
Matrix A(a),B(b);
while(n){
if(n&) A=A*B;
B=B*B,n>>=;
}
printf("%lld\n",A.g[][]);
return ;
}

洛谷P1349 广义斐波那契数列的更多相关文章

  1. 洛谷P1349 广义斐波那契数列(矩阵快速幂)

    P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...

  2. 洛谷——P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...

  3. 洛谷——P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  4. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  5. P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...

  6. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

  7. P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  8. Luogu P1349 广义斐波那契数列

    解题思路 既然广义斐波那契,而且数据范围这么大,那么我们使用矩阵快速幂来进行求解.大家都知道斐波那契的初始矩阵如下 $$\begin{bmatrix}1&1\\1&0\end{bmat ...

  9. 【洛谷P1962】斐波那契数列

    斐波那契数列 题目链接:https://www.luogu.org/problemnew/show/P1962 矩阵A 1,1 1,0 用A^k即可求出feb(k). 矩阵快速幂 #include&l ...

随机推荐

  1. qt和makefile学习网址

    http://blog.51cto.com/zt/20/1/   ---qt学习网站 http://www.chinaunix.net/old_jh/23/408225.html  [精华] 跟我一起 ...

  2. leetcode 201. Bitwise AND of Numbers Range(位运算,dp)

    Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers ...

  3. 数据交换格式XML和JSON对比

    1.简介: XML:extensible markup language,一种类似于HTML的语言,他没有预先定义的标签,使用DTD(document type definition)文档类型定义来组 ...

  4. FFmpeg 'scale' filter not present, cannot convert pixel formats.

    /*************************************************************************** * FFmpeg 'scale' filter ...

  5. Mysql 排序null值 排序问题分析

    mysql中null值的排序问题分析   如下表t_user:  name age zhangsan 1 lisi NULL wangwu 2   www.2cto.com   执行一下sql:  S ...

  6. 扩展欧几里得算法(exgcd)

    Bezout定理: 对于任意整数a,b,存在一对整数x,y满足:a*x+b*y=gcd(a,b) 证明如下: 在欧几里得算法的最后一步:b=0,即:gcd(a,0)=a 对于b>0,根据欧几里得 ...

  7. vc++ 访问php webService

    之前做了一个VC++访问c#制作的WebService,没有问题,接着我又做了一个VC++访问php制作的WebService ,结果老是出现Client错误.这个php WebService是用Ze ...

  8. BZOJ3307:雨天的尾巴

    浅谈线段树合并:https://www.cnblogs.com/AKMer/p/10251001.html 题目传送门:https://lydsy.com/JudgeOnline/problem.ph ...

  9. 洛谷【P1561】[USACO12JAN]爬山Mountain Climbing

    我对\(Jhonson\)算法的理解:https://www.cnblogs.com/AKMer/p/9863620.html 题目传送门:https://www.luogu.org/problemn ...

  10. I2C Bus

    概述: I²C 是Inter-Integrated Circuit的缩写,发音为"eye-squared cee" or "eye-two-cee" , 它是一 ...