Description

Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other ordinary balance. 
It orders two arms of negligible weight and each arm's length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights. 
Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced.

Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device. 
It is guaranteed that will exist at least one solution for each test case at the evaluation. 

Input

The input has the following structure: 
• the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20); 
• the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: '-' for the left arm and '+' for the right arm); 
• on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights' values. 

Output

The output contains the number M representing the number of possibilities to poise the balance.

Sample Input

2 4
-2 3
3 4 5 8

Sample Output

2

Source

题意:

给你一些砝码与与挂钩,问使得天平横有多少种挂法

题解:

01背包变形,物品是砝码,重量就是 砝码的质量*力臂,而背包的能承受的重量为0,我们需要得到重量为0的方法数。

#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN=15000; //15*20*25*2
long long dp[21][MAXN];//前者代表选取这个砝码,后者代表 挂钩*砝码
int main()
{
int c,g;
scanf("%d%d",&c,&g);
int x[21],w[21];
for (int i = 1; i <=c ; ++i) {
scanf("%d",&x[i]);
}
for (int j = 1; j<=g ; ++j) {
scanf("%d",&w[j]);
}
memset(dp,0, sizeof(dp));
dp[0][7500]=1; //选取有正有负,需要把加为正数。初始状态应为1,
for (int i = 1; i <=g ; ++i) {
for (int j = 0; j <15000 ; ++j) {
for (int k = 1; k <=c ; ++k) {
dp[i][j+x[k]*w[i]]+=dp[i-1][j];
}
}
}
printf("%lld\n",dp[g][7500]);
return 0;
}

  

Balance POJ - 1837的更多相关文章

  1. Balance POJ - 1837 地推

    Gigel has a strange "balance" and he wants to poise it. Actually, the device is different ...

  2. POJ 1837 -- Balance(DP)

     POJ 1837 -- Balance 转载:優YoU   http://user.qzone.qq.com/289065406/blog/1299341345 提示:动态规划,01背包 初看此题第 ...

  3. poj 1837 Balance(背包)

    题目链接:http://poj.org/problem?id=1837 Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  4. POJ 1837 Balance 01背包

    题目: http://poj.org/problem?id=1837 感觉dp的题目都很难做,这道题如果不看题解不知道憋到毕业能不能做出来,转化成了01背包问题,很神奇.. #include < ...

  5. POJ 1837 Balance 水题, DP 难度:0

    题目 http://poj.org/problem?id=1837 题意 单组数据,有一根杠杆,有R个钩子,其位置hi为整数且属于[-15,15],有C个重物,其质量wi为整数且属于[1,25],重物 ...

  6. POJ 1837 Balance

    Balance Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9240 Accepted: 5670 Description G ...

  7. POJ 1837 Balance(01背包变形, 枚举DP)

    Q: dp 数组应该怎么设置? A: dp[i][j] 表示前 i 件物品放入天平后形成平衡度为 j 的方案数 题意: 有一个天平, 天平的两侧可以挂上重物, 给定 C 个钩子和G个秤砣. 2 4 - ...

  8. [poj 1837] Balance dp

    Description Gigel has a strange "balance" and he wants to poise it. Actually, the device i ...

  9. poj 1837 Balance (0 1 背包)

    Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10326   Accepted: 6393 题意:给你n个挂 ...

随机推荐

  1. [vijos]lxhgww的奇思妙想(长链剖分)

    题意 题目链接 Sol 长链剖分 又是一个用各种花式技巧优化的暴力 它的主要思想是:对于每个节点,把深度最深的子节点当做重儿子,它们之间的边当做重边 这样就会有一些非常好的轻质 所有链长总和是\(O( ...

  2. vue2.0 $router和$route的区别

    在vue2.0里页面参数是 this.$route.query或者 this.$route.params 接收router-link传的参数. 在路由跳转的时候除了用router-link标签以外需要 ...

  3. What is mobile platform?

    高屋建瓴 From Up to Down Outside into inside The Internet Of Things. http://wenku.baidu.com/view/5cdc026 ...

  4. selenium googleDrive

    http://chromedriver.storage.googleapis.com/index.html?path=2.1/下载地址 把googledriver.exe 放到google浏览器下目录 ...

  5. 如何领域驱动设计?-实践感悟&总结分享

    主要是在开发过程中,个人对于领域驱动设计的实践感悟和总结:也是对新进开发人员的培训资料:希望对关注DDD的童鞋有所帮助. 概述 领域驱动不是纯粹的技术问题,领域建模(建立数据表只是一部分)是领域专家( ...

  6. strdup和strndup函数

    首先说明一下:这两个函数不建议使用,原因是返回内存地址把释放权交给别的变量,容易忘记释放. 一.strdup函数 函数原型 头文件:#include <string.h> char *st ...

  7. IOS 设置ipone状态栏的样式

    /** 控制状态栏的样式 */ -(UIStatusBarStyle)preferredStatusBarStyle { //白色 return UIStatusBarStyleLightConten ...

  8. 2017.9.16 Web 应用开发环境搭建与开发工具安装

    1.JDK的下载与安装 1.1 在网址:http://javase/downloads/index.jsp网站下载最新的JDK版本 1.2 安装jdk,双击下载好的.exe文件运行,一般默认安装在c盘 ...

  9. 在matlab中查看变量的数据类型

    >> x = x = >> class(x) ans = double

  10. python中那个断言assert的优化

    Python Assert 为何不尽如人意# Python中的断言用起来非常简单,你可以在assert后面跟上任意判断条件,如果断言失败则会抛出异常. Copy >>> assert ...