题意

题目链接

Sol

非常妙的一道题目。

首先,我们可以把\(C_{a_i + b_i + a_j + b_j}^{a_i + a_j}\)看做从\((-a_i, -b_i)\)走到\((a_j, b_j)\)的方案数

然后全都放的一起dp,\(f[i][j]\)表示从\((i, j)\)之前的所有点到\((i, j)\)的方案数

减去重复的即可


#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 10, mod = 1e9 + 7;
inline int read() {
int x = 0, f = 1; char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, a[MAXN], b[MAXN], f[5001][5001], fac[10001], ifac[10001];
int add(int x, int y) {
if(x + y < 0) return x + y + mod;
return x + y > mod ? x + y - mod : x + y ;
}
int mul(int x, int y) {
return 1ll * x * y % mod;
}
int fastpow(int a, int p) {
int base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
void init() {
fac[0] = 1;
for(int i = 1; i <= 8000; i++) fac[i] = mul(i, fac[i - 1]);
ifac[8000] = fastpow(fac[8000], mod - 2);
for(int i = 8000; i; i--) ifac[i - 1] = mul(i, ifac[i]);
}
int id(int x) {
return 2001 + x;
}
int C(int N, int M) {
return 1ll * fac[N] * ifac[N - M] % mod * ifac[M] % mod;
}
main() {
// freopen("a.in", "r", stdin);
init();
N = read();
for(int i = 1; i <= N; i++) a[i] = read(), b[i] = read(), f[id(-a[i])][id(-b[i])]++;
for(int i = 1; i <= 4221; i++)
for(int j = 1; j <= 4221; j++)
f[i][j] = add(f[i][j], add(f[i - 1][j], f[i][j - 1]));
// printf("%d %d %d\n", i, j, f[i][j]);
int sum = 0;
for(int i = 1; i <= N; i++)
sum = add(sum, add(f[id(a[i])][id(b[i])], -C(a[i] + b[i] + a[i] + b[i], a[i] + a[i])));
//这里会到8000.。。
sum = 1ll * sum * 500000004ll % mod;
cout << sum % mod;
return 0;
}
/*
8
2000 2000
1999 1998
1 1
1 1
2 1
1 3
2 1
3 3
*/

agc001E - BBQ Hard(dp 组合数)的更多相关文章

  1. AtCoder AGC001E BBQ Hard (DP、组合计数)

    题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_e 题解: 求\(\sum^n_{i=1}\sum^n_{j=i+1} {A_i+A_j+B ...

  2. [Agc001E] BBQ Hard

    [Agc001E] BBQ Hard 题目大意 给定\(n\)对正整数\(a_i,b_i\),求\(\sum_{i=1}^{n-1} \sum_{j=i+1}^n \binom{a_i+b_i+a_j ...

  3. noj 2033 一页书的书 [ dp + 组合数 ]

    传送门 一页书的书 时间限制(普通/Java) : 1000 MS/ 3000 MS          运行内存限制 : 65536 KByte总提交 : 53            测试通过 : 1 ...

  4. 【区间dp+组合数+数学期望】Expression

    https://www.bnuoj.com/v3/contest_show.php?cid=9148#problem/I [题意] 给定n个操作数和n-1个操作符,组成一个数学式子.每次可以选择两个相 ...

  5. [agc001E]BBQ Hard[组合数性质+dp]

    Description 传送门 Solution 题目简化后要求的实际上是$\sum _{i=1}^{n-1}\sum _{j=i+1}^{n}C^{A[i]+A[j]}_{A[i]+A[j]+B[i ...

  6. hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)

    DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...

  7. Contest 20140708 testB dp 组合数

    testB 输入文件: testB.in  输出文件testB.out 时限3000ms 问题描述: 定义这样一个序列(a1,b1),(a2,b2),…,(ak,bk)如果这个序列是方序列的话必须满足 ...

  8. HDU 5396 Expression(DP+组合数)(详解)

    题目大意: 给你一个n然后是n个数. 然后是n-1个操作符,操作符是插入在两个数字之间的. 由于你不同的运算顺序,会产生不同的结果. 比如: 1 + 1 * 2 有两种  (1+1)*2   或者   ...

  9. LightOJ - 1246 Colorful Board(DP+组合数)

    http://lightoj.com/volume_showproblem.php?problem=1246 题意 有个(M+1)*(N+1)的棋盘,用k种颜色给它涂色,要求曼哈顿距离为奇数的格子之间 ...

随机推荐

  1. 正交表生成工具 PICT 成对组合覆盖 收藏

    收藏:https://www.cnblogs.com/wmjperson/p/4557246.html

  2. java webservices 以Axis1.4方式 调用sap webservice接口.

    1. 首先需要下载Axis1.4 jar包,这个必应搜索大把,下载下来后把jar包加入eclipse工程项目路径中即可. 2. 下载mail.jar和activation.jar 俩个包.下载地址:h ...

  3. CF351A Jeff and Rounding 思维

    Jeff got 2n real numbers a1, a2, ..., a2n as a birthday present. The boy hates non-integer numbers, ...

  4. 设置linux服务器文件夹权限

    最近搞的网站一上传图片,就报500错误.经排查是服务器文件夹权限设置问题. 使用命令: chmod o+rwx avatar 即可改变文件夹权限设置.

  5. kvm重新命名

    1.停止虚拟机 virsh shutdown wcltest3 2.导出虚拟机的配置文件 cd /etc/libvirt/qemu virsh dumpxml wcltest3 > vnc.xm ...

  6. 【笔记】Django的ORM之多对多表的增和删

    [笔记]Django的ORM之多对多表的增和删 Django ORM 多对多  一 昨日补充:外键关联 外键在ORM中的关联方式: 与数据表相关的类都放到models.py文件中 class Book ...

  7. poj2001 Shortest Prefixes(字典树)

    Shortest Prefixes Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 21642   Accepted: 926 ...

  8. flink日记

    直接下载 解压, 运行 ./bin/start-cluster.sh 几个概念: 批处理: 大数据量,不要求实时. 输入源是有界的 流处理:实时要求高,通常在毫秒级, 数据量比较小,但是输入源是无界的 ...

  9. mysql 存储过程(代码块)

    大纲: 创建.删除.调用. 声明变量.变量赋值 声明游标 声明异常处理器 判断 循环 使用心得 一.创建.删除.调用 创建 DELIMITER $$ #修改分隔符 )) #括号里是入参.IN代表传入的 ...

  10. Cookie和Session入门(一)

    目录一)背景介绍二)Cookie机制三)Session机制四)两者比较五)参考资料链接一)背景介绍Cookie与Session是常用的会话跟踪技术.1.Cookie通过在客户端记录信息确定用户身份,S ...