Lifting the Stone

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon. 

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line. 

Output

Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway. 

Sample Input

2
4
5 0
0 5
-5 0
0 -5
4
1 1
11 1
11 11
1 11

Sample Output

0.00 0.00
6.00 6.00 //求多边形的重心
第一行是案例数,然后是点的个数,然后是每个点的坐标
重量均匀分布的三角形,重心 X = (x1 + x2 + x3)/3 , Y = ( y1 + y2 + y3 )/3
质量集中在顶点上的多边形,n 个顶点坐标为(xi,yi),质量为mi,则重心 
X = ∑( xi×mi ) / ∑mi 
Y = ∑( yi×mi ) / ∑mi
思路 : 将这个多边形转换成多个三角形,然后求出各个重心,将这些重心连起来形成个新多边形,求出重心
所以套公式就行了
 #include <iostream>
#include <cstdio>
using namespace std; struct Node
{
double x,y;
}node[]; int main()
{
int n;
cin>>n;
while (n--)
{
int dian;
cin>>dian;
double x1,x2,y1,y2;
cin>>x1>>y1>>x2>>y2; int i;
double x,y;
double sumarea=0.0,sumx=0.0,sumy=0.0;
for (i=;i<dian;i++)
{
cin>>x>>y;
double s=( (x2-x1) * (y-y1) - (x-x1) * (y2-y1) ) / ;
// s= ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 2
sumarea+=s;
sumx+=s*(x1+x2+x)/;
sumy+=s*(y1+y2+y)/;
x2=x;
y2=y;
}
printf("%.2lf %.2lf\n",sumx/sumarea,sumy/sumarea);
}
return ;
}
 

Lifting the Stone(多边形重心)的更多相关文章

  1. POJ1385 Lifting the Stone 多边形重心

    POJ1385 给定n个顶点 顺序连成多边形 求重心 n<=1e+6 比较裸的重心问题 没有特别数据 由于答案保留两位小数四舍五入 需要+0.0005消除误差 #include<iostr ...

  2. hdu 1115 Lifting the Stone 多边形的重心

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. Lifting the Stone(求多边形的重心—)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...

  4. Lifting the Stone(hdu1115)多边形的重心

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...

  5. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  6. hdu1115 Lifting the Stone(几何,求多边形重心模板题)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1115">http://acm.hdu.edu.cn/showproblem.php ...

  7. POJ 1385 Lifting the Stone (多边形的重心)

    Lifting the Stone 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/G Description There are ...

  8. poj 1115 Lifting the Stone 计算多边形的中心

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  9. (hdu step 7.1.3)Lifting the Stone(求凸多边形的重心)

    题目: Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. 对于session序列化跟session的钝化与活化的粗浅理解

    1. API对序列化的解释:类通过实现 java.io.Serializable 接口以启用其序列化功能.未实现此接口的类将无法使其任何状态序列化或反序列化.可序列化类的所有子类型本身都是可序列化的. ...

  2. Webpack打包工具学习使用

    Webpack 是当下最热门的前端资源模块化管理和打包工具.它可以将许多松散的模块按照依赖和规则打包成符合生产环境部署的前端资源.还可以将按需加载的模块进行代码分隔,等到实际需要的时候再异步加载.通过 ...

  3. 【Consul】 分布式环境中的服务注册和发现利器

    参考资料: http://www.cnblogs.com/shanyou/p/4695131.html http://blog.csdn.net/viewcode/article/details/45 ...

  4. 清理memcached缓存

    清理memcached缓存 学习了:https://blog.csdn.net/allus0918/article/details/50481927 使用telnet登录 flush_all 命令:

  5. Oracle基础 程序包

    一.程序包 程序包是一种数据库对象,它是对相关PLSQL类型.子程序.游标.异常.变量和常量的封装.程序包包含两部分内容: 1.程序包规范:可以声明类型.变量.常量.异常.游标和子程序. 2.程序包主 ...

  6. 怎样取消Macbook上顽固的开机启动项

    博主遇到的一个顽固启动项是Cisco Anyconnect.我仅仅是偶尔须要使用VPN.可是安装了Cisco Anyconnect之后,每次开机它都会启动,非常烦人. 1 通过系统设置 首先,博主希望 ...

  7. eclipse 内存配置

    -server -Xms256m -Xmx512m -XX:PermSize=128M -XX:MaxPermSize=256m -XX:+UseG1GC

  8. React Native 项目实战 -- DoubanProject

    引言:本文是我研究react-native时写的一个简单的demo,代码里有详细的注释,好废话不多说,直接上代码. 1.项目目录 2.index.android.js /** * index.andr ...

  9. 【HTML5】交互元素menu&command元素

    1.交互元素<menu> 1.1源码 <!DOCTYPE html> <html> <head> <meta charset="utf- ...

  10. 【HTML5】summary交互元素

    1.源码 <!DOCTYPE HTML> <html> <head> <meta charset="UTF-8"/> <tit ...