Hadoop计数器
1. MapReduce计数器是什么
计数器是用来记录Job的执行进度和状态的,其作用类似于日志。我们可以在程序的某个位置插入计数器,记录数据或进度的变化情况。
2. MapReduce计数器能做什么
计数器为我们提供了一个窗口,用于观察Job运行期间的各种细节数据,对MapReduce的性能调优很有帮助,MapReduce性能优化的评估大部分都是基于这些计数器Counter的数值来表现的。
3. MapReduce都有哪些内置计数器
MapReduce中自带了许多默认的Counter计数器,要了解这些内置计数器,必须知道计数组名称(groupName)和计数器名称(counterName)。
(1)任务计数器
在任务技术过程中,它负责采集任务的主要信息,每个作业的所有任务的结果都会被聚集起来。下面以MapReduce人事物计数器为例:
groupName:org.apache.hadoop.mapreduce.TaskCounter
counterName:
1)MAP_INPUT_RECORDS
2)REDUICE_INPUT_RECORDS
3)CPU_MILLISECONDS
(2)作业计数器
作业计数器由JobTracker或者YARN维护维护,因此无需在网络间传输数据。这些计数器都是作业级别的通缉量,其值不会随着任务运行而改变。
groupName:org.apache.hadoop.mapreduce.JobCounter
counterName:
1)TOTAL_LAUNCHED_MAPS
2)TOTAL_LAUNCHED_REDUCES
4. 计数器该如何使用
(1)定义计数器
1)枚举声明计数器
Contex contex…
//自定义枚举变量
Counter counter = contex.getCounter(Enum eum)
2)自定义计数器
Contex contex…
//自己命名groupName和counterName
Counter counter = contex.getCounter(String groupName, String counterName)
(2)为计数器赋值
1) 初始化计数器
counter.setValue(long value);//设置初始值
2) 计数器自增
counter.increment(long incr);//增加计数
(3) 获取计数器的值
1) 获取枚举计数器的值
Job job…
job.waitForCompletion(true);
Counters counters = job.getCounters();
Counter counter = counters.findCounter(BAD_RECORDS);
//查找枚举计数器,假如Enum的变量为BAD_RECORDS
long value = counter.getValue();//获取计数值
2) 获取自定义计数器的值
Job job...
job.waitForCompletion(true);
Counters counters=job.getCounters();
Counter counter=counters.findCounter("ErrorCounter","toolong");//假如groupName为ErrorCounter,counterName为toolong
long value=counter.getValue();//获取计数值
3)获取内置计数器的值
Job job...
job.waitForCompletion(true);
Counters counters=job.getCounters();
Counter counter=counters.findCounter("org.apache.hadoop.mapreduce.JobCounter", "TOTAL_LAUNCHED_REDUCES");
//假如groupName为org.apache.hadoop.mapreduce.JobCounter,counterName为TOTAL_LAUNCHED_REDUCES
long value=counter.getValue();//获取计数值
4)获取所有计数器的值
Counters counters = job.getCounters();
for (CounterGroup group : counters) {
for (Counter counter : group) {
System.out.println(counter.getDisplayName() + ": " + counter.getName() + ": "+ counter.getValue());
}
}
5. 自定义计数器
自定义计数器用的比较广泛,特别是统计无效数据条数的时候,我们就会用到计数器来记录错误日志的条数。下面我们自定义计数器,统计输入的无效数据。
数据集
假如一个文件,规范的格式是3个字段,“\t”作为分隔符,其中有2条异常数据,一条数据是只有2个字段,一条数据是有4个字段。其内容如下所示:
jim 1 28
kate 0 26
tom 1
kaka 1 22
lily 0 29 22
启动Hadoop集群,然后在HDFS中新建目录存放测试数据。

在Hadoop项目下新建MyCounter.java类
package com.hadoop.Counter; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; /**
* @author Zimo
* MapReduce计数器
*/
public class MyCounter extends Configured implements Tool { /**
* @param args
*/
public static class MyCounterMap extends Mapper<LongWritable, Text, Text, Text> {
//定义枚举对象
public static enum LOG_PROCESSOR_COUNTER {
//枚举对象BAD_RECORDS_LONG来统计长数据,枚举对象BAD_RECORDS_SHORT来统计短数据
BAD_RECORDS_LONG, BAD_RECORDS_SHORT
}; protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String arr_values[] = value.toString().split("/t");
if (arr_values.length > ) {
//动态自定义计数器
context.getCounter("ErrorCounter", "toolong").increment();
//枚举声明计数器
context.getCounter(LOG_PROCESSOR_COUNTER.BAD_RECORDS_LONG).increment();
} else if(arr_values.length < ) {
// 动态自定义计数器
context.getCounter("ErrorCounter", "tooshort").increment();
// 枚举声明计数器
context.getCounter(LOG_PROCESSOR_COUNTER.BAD_RECORDS_SHORT).increment();
} else {
context.write(value, new Text(""));
}
}
} public int run(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Path myPath = new Path(args[]);
FileSystem hdfs = myPath.getFileSystem(conf);
if (hdfs.isDirectory(myPath)) {
hdfs.delete(myPath);
} Job job = new Job(conf, "MyCounter");
job.setJarByClass(MyCounter.class);
job.setMapperClass(MyCounterMap.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(args[]));
FileOutputFormat.setOutputPath(job, new Path(args[]));
job.waitForCompletion(true); return ;
} public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
String[] arg0 = {
"hdfs://centpy:9000/counter/counter.txt", "hdfs://centpy:9000/counter/out"
};
int ec = ToolRunner.run(new Configuration(), new MyCounter(), arg0);
System.exit(ec);
} }
运行程序之后,日志如下所示。
-- ::, INFO [org.apache.hadoop.mapreduce.Job] - Counters:
File System Counters
FILE: Number of bytes read=
FILE: Number of bytes written=
FILE: Number of read operations=
FILE: Number of large read operations=
FILE: Number of write operations=
HDFS: Number of bytes read=
HDFS: Number of bytes written=
HDFS: Number of read operations=
HDFS: Number of large read operations=
HDFS: Number of write operations=
Map-Reduce Framework
Map input records=
Map output records=
Map output bytes=
Map output materialized bytes=
Input split bytes=
Combine input records=
Combine output records=
Reduce input groups=
Reduce shuffle bytes=
Reduce input records=
Reduce output records=
Spilled Records=
Shuffled Maps =
Failed Shuffles=
Merged Map outputs=
GC time elapsed (ms)=
CPU time spent (ms)=
Physical memory (bytes) snapshot=
Virtual memory (bytes) snapshot=
Total committed heap usage (bytes)=
ErrorCounter
tooshort=
com.hadoop.Counter.MyCounter$MyCounterMap$LOG_PROCESSOR_COUNTER
BAD_RECORDS_SHORT=
File Input Format Counters
Bytes Read=
File Output Format Counters
Bytes Written=0
从日志中可以看出,通过枚举声明和自定义计数器两种方式,统计出的不规范数据是一样的。
以上就是博主为大家介绍的这一板块的主要内容,这都是博主自己的学习过程,希望能给大家带来一定的指导作用,有用的还望大家点个支持,如果对你没用也望包涵,有错误烦请指出。如有期待可关注博主以第一时间获取更新哦,谢谢!
版权声明:本文为博主原创文章,未经博主允许不得转载。
Hadoop计数器的更多相关文章
- hadoop 计数器
一.hadoop有非常多自带的计数器,相信看过执行log的都会看到各种数据 二.用户自己定义计数器 在开发中常常须要记录错误的数据条数,就能够用计数器来解决. 1.定义:用一个枚举来定义一组计数器,枚 ...
- Hadoop日记Day17---计数器、map规约、分区学习
一.Hadoop计数器 1.1 什么是Hadoop计数器 Haoop是处理大数据的,不适合处理小数据,有些大数据问题是小数据程序是处理不了的,他是一个高延迟的任务,有时处理一个大数据需要花费好几个小时 ...
- MapReducer Counter计数器的使用,Combiner ,Partitioner,Sort,Grop的使用,
一:Counter计数器的使用 hadoop计数器:可以让开发人员以全局的视角来审查程序的运行情况以及各项指标,及时做出错误诊断并进行相应处理. 内置计数器(MapReduce相关.文件系统相关和作业 ...
- Hadoop学习记录(4)|MapReduce原理|API操作使用
MapReduce概念 MapReduce是一种分布式计算模型,由谷歌提出,主要用于搜索领域,解决海量数据计算问题. MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce( ...
- MapReduce的计数器
第一部分.Hadoop计数器简述 hadoop计数器: 可以让开发人员以全局的视角来审查程序的运行情况以及各项指标,及时做出错误诊断并进行相应处理. 内置计数器(MapReduce相关.文件系统相关 ...
- HIVE编程指南之HiveQL的学习笔记1
// HiveQLa) 数据定义语言1 数据库表的一个目录或命名空间,如果用户没有指定数据库的话,那么将会使用默认的数据库default-----创建数据库CREATE DATABASE guoyon ...
- HQL之动态分区调整
动态分区插入可以基于查询语句分出出要插入的分区名称.比如,下面向分区表插入数据的SQL: insert into table chavin.emp_pat partition(dname,loc) s ...
- hive从查询中获取数据插入到表或动态分区
Hive的insert语句能够从查询语句中获取数据,并同时将数据Load到目标表中.现在假定有一个已有数据的表staged_employees(雇员信息全量表),所属国家cnty和所属州st是该表的两 ...
- Hive Tutorial 阅读记录
Hive Tutorial 目录 Hive Tutorial 1.Concepts 1.1.What Is Hive 1.2.What Hive Is NOT 1.3.Getting Started ...
随机推荐
- 一 Akka学习 - actor
(引用 http://shiyanjun.cn/archives/1168.html) 一: 什么是Akka? Akka是JAVA虚拟机JVM平台上构建高并发.分布式和容错应用的工具包和运行时,是一个 ...
- java基础知识(7)---多态
多 态:(面向对象特征之一):函数本身就具备多态性,某一种事物有不同的具体的体现.体现:父类引用或者接口的引用指向了自己的子类对象.//Animal a = new Cat();多态的好处:提高了程序 ...
- 进程vs线程
内存中的内容不同 进程->{ 进程是系统分配资源的最基本单位,线程是进程的一部分, 进程中存储文件和网络句柄 } 线程->{ 栈(每个线程都有一个栈空间) pc(当前或下一条指令的地址,指 ...
- 如何在niosII中添加i2c外设_winday_新浪博客
如何在niosII中添加i2c外设_winday_新浪博客 如何在niosII中添加i2c外设 winday 摘要:本文说明了如何在niosII添加第三方i2c外设,以供参考. 由于本人使用的Alte ...
- javascript之模拟块级作用域
在java.C++等语言中,变量i在会在for循环的语句块中定义,循环一旦结束,变量i就会被销毁.可是在javaScript中,从定义开始,就可以在函数内部随处访问.比如 function outpu ...
- 记一次SQL xml字段关联查询
需求: 一张表是APP表,结构如下: app_category为该游戏所属的类别ID,xml字段类型 另一张表是类别表,就ID对应名称,这就不上图了. 还有一张表是每个游戏的下载记录,结构如下: Do ...
- hadoop自己写的最高温度程序源码
package com.teset; import java.io.IOException; import java.util.StringTokenizer; import org.apache.h ...
- Linux下UDP发送大量请求导致Operation not permitted的问题探讨
一.问题背景目前公司准备上微服务的架构模式,在对比大量的API网关之后,最后选中了Kong作为我们的API网关,在经过大量的研究之后,啊呸,踩坑之后,终于跑起来了,简直是普天同庆,撒花祝贺. 但是在美 ...
- 115个Java面试题和答案
面向对象编程(OOP) Java是一个支持并发.基于类和面向对象的计算机编程语言.下面列出了面向对象软件开发的优点: 代码开发模块化,更易维护和修改. 代码复用. 增强代码的可靠性和灵活性. 增加代码 ...
- 编写html页面时常见的问题(转)
编写html页面时常见的问题(一) 说到写页面,肯定有很多人在刚接触编写页面这一块时遇到很多细节和兼容性的问题,那么在这里我总结一些经常遇到的小问题.希望能够帮助学习页面搭建的初学者! 虽然说ie ...