题目

满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中。由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉全席,而能够烹饪出经过专家认证的满汉全席,也是中国厨师最大的荣誉之一。 世界满汉全席协会是由能够料理满汉全席的专家厨师们所组成,而他们之间还细分为许多不同等级的厨师。为了招收新进的厨师进入世界满汉全席协会,将于近日举办满汉全席大赛,协会派遣许多会员当作评审员,为的就是要在參赛的厨师之中,找到满汉料理界的明日之星。 大会的规则如下:每位參赛的选手可以得到n 种材料,选手可以自由选择用满式或是汉式料理将材料当成菜肴。大会的评审制度是:共有m 位评审员分别把关。每一位评审员对于满汉全席有各自独特的見解,但基本见解是,要有兩样菜色作为满汉全席的标志。如某评审认为,如果没有汉式东坡肉跟满式的涮羊肉锅,就不能算是满汉全席。但避免过于有主見的审核,大会规定一个评审员除非是在认为必备的两样菜色都没有做出來的狀况下,才能淘汰一位选手,否则不能淘汰一位參赛者。换句话說,只要參赛者能在这兩种材料的做法中,其中一个符合评审的喜好即可通过该评审的审查。如材料有猪肉,羊肉和牛肉时,有四位评审员的喜好如下表: 评审一 评审二 评审三 评审四 满式牛肉 满式猪肉 汉式牛肉 汉式牛肉 汉式猪肉 满式羊肉 汉式猪肉 满式羊肉 如參赛者甲做出满式猪肉,满式羊肉和满式牛肉料理,他将无法满足评审三的要求,无法通过评审。而參赛者乙做出汉式猪肉,满式羊肉和满式牛肉料理,就可以满足所有评审的要求。 但大会后來发现,在这样的制度下如果材料选择跟派出的评审员没有特别安排好的话,所有的參赛者最多只能通过部分评审员的审查而不是全部,所以可能会发生没有人通过考核的情形。如有四个评审员喜好如下表时,则不論參赛者采取什么样的做法,都不可能通过所有评审的考核: 评审一 评审二 评审三 评审四 满式羊肉 满式猪肉 汉式羊肉 汉式羊肉 汉式猪肉 满式羊肉 汉式猪肉 满式猪肉 所以大会希望有人能写一个程序來判断,所选出的m 位评审,会不会发生 没有人能通过考核的窘境,以便协会组织合适的评审团。

输入格式

第一行包含一个数字 K,代表测试文件包含了K 组资料。每一组测试资料的第一行包含兩个数字n 跟m(n≤100,m≤1000),代表有n 种材料,m 位评审员。为方便起見,材料舍弃中文名称而给予编号,编号分别从1 到n。接下來的m 行,每行都代表对应的评审员所拥有的兩个喜好,每个喜好由一个英文字母跟一个数字代表,如m1 代表这个评审喜欢第1 个材料透过满式料理做出來的菜,而h2 代表这个评审员喜欢第2 个材料透过汉式料理做出來的菜。每个测试文件不会有超过50 组测试资料

输出格式

每笔测试资料输出一行,如果不会发生没有人能通过考核的窘境,输出GOOD;否则输出BAD(大写字母)。

输入样例

2

3 4

m3 h1

m1 m2

h1 h3

h3 m2

2 4

h1 m2

m2 m1

h1 h2

m1 h2

输出样例

GOOD

BAD

题解

一句话题意:

有n个物品,每个物品赋予’h’或’m’一种属性。有m个二元限制:“某物品必须是某属性”,要求每个二元限制至少满足一个,问是否有解

经典的2-sat问题,是一个入门题【都不用输出方案。。。】
对于每个限制,我们如果不选第一个就必须选第二个
我们把物品分为两个点分别表示两种属性。显然一个物品不能同时具有两个属性,所以它们是互斥的。对于每对限制,两个点分别向另一个点的相对点连有向边,2-sat判断一下就好

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 205,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int get(){
char c = getchar();
while (c != 'm' && c != 'h') c = getchar();
return 2 * RD() - (c == 'h');
}
int n,m,h[maxn],ne = 0;
struct EDGE{int to,nxt;}ed[maxm];
inline void build(int u,int v){
ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;
}
int dfn[maxn],low[maxn],Scc[maxn],scci,cnt,st[maxn],top = 0;
void dfs(int u){
dfn[u] = low[u] = ++cnt;
st[++top] = u;
Redge(u){
if (!dfn[to = ed[k].to])
dfs(to),low[u] = min(low[u],low[to]);
else if (!Scc[to]) low[u] = min(low[u],dfn[to]);
}
if (dfn[u] == low[u]){
scci++;
do{Scc[st[top]] = scci;}while (st[top--] != u);
}
}
int main(){
int T = RD(),x,y,u,v,flag;
while (T--){
n = RD(); m = RD(); flag = true;
ne = scci = cnt = 0;
REP(i,n << 1) dfn[i] = h[i] = Scc[i] = 0;
while (m--){
x = get(); y = get();
u = (x & 1) ? x + 1 : x - 1;
v = (y & 1) ? y + 1 : y - 1;
build(x,v); build(y,u);
}
REP(i,n << 1) if (!dfn[i]) dfs(i);
REP(i,n) if (Scc[2 * i] == Scc[2 * i - 1]){flag = false; break;}
if (flag) puts("GOOD");
else puts("BAD");
}
return 0;
}

BZOJ1823 [JSOI2010]满汉全席 【2-sat】的更多相关文章

  1. bzoj1823 [JSOI2010]满汉全席(2-SAT)

    1823: [JSOI2010]满汉全席 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1246  Solved: 598[Submit][Status ...

  2. Bzoj1823 [JSOI2010]满汉全席

    Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1640  Solved: 798 Description 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的 ...

  3. BZOJ1823[JSOI2010]满汉全席——2-SAT+tarjan缩点

    题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉全席,而能够烹饪出经过 ...

  4. BZOJ1823 [JSOI2010]满汉全席 2-sat

    原文链接http://www.cnblogs.com/zhouzhendong/p/8125944.html 题目传送门 - BZOJ1823 题意概括 有n道菜,分别可以做成满式和汉式(每道菜只能做 ...

  5. [bzoj1823][JSOI2010]满汉全席——2-SAT

    题目大意 题目又丑又长我就不贴了,说一下大意,有n种菜,m个评委,每一个评委又有两种喜好,每种菜有满汉两种做法,只能选一种.判断是否存在一种方案使得所有评委至少喜欢一种菜品.输入包含多组数据. 题解 ...

  6. 【BZOJ1823】[JSOI2010]满汉全席(2-sat)

    [BZOJ1823][JSOI2010]满汉全席(2-sat) 题面 BZOJ 洛谷 题解 很明显的\(2-sat\)模板题,还不需要输出方案. 对于任意两组限制之间,检查有无同一种石材要用两种不同的 ...

  7. 【BZOJ1823】[JSOI2010]满汉全席 2-SAT

    [BZOJ1823][JSOI2010]满汉全席 Description 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只 ...

  8. C++之路进阶——bzoj1823(满汉全席)

    F.A.Qs Home Discuss ProblemSet Status Ranklist Contest ModifyUser  hyxzc Logout 捐赠本站 Notice:由于本OJ建立在 ...

  9. BZOJ 1823: [JSOI2010]满汉全席( 2-sat )

    2-sat...假如一个评委喜好的2样中..其中一样没做, 那另一样就一定要做, 这样去建图..然后跑tarjan. 时间复杂度O((n+m)*K) ------------------------- ...

随机推荐

  1. mybatis异常:Could not find result map ......... 问题分析及解决

    org.apache.ibatis.builder.IncompleteElementException: Could not find result map....... 网上的大部分的改正方法是: ...

  2. Logrotate实现Catalina.out日志每俩小时切割

    一.Logrotate工具介绍 Logrotate是一个日志文件管理工具,它是Linux默认自带的一个日志切割工具.用来把旧文件轮转.压缩.删除,并且创建新的日志文件.我们可以根据日志文件的大小.天数 ...

  3. ethereum(以太坊)(二)--合约中属性和行为的访问权限

    pragma solidity ^0.4.0; contract Test{ /* 属性的访问权限 priveta public internal defualt internal interlnal ...

  4. PHP脚本执行效率性能检测之WebGrind的使用

    webgrind这个性能检测是需要xdebug来配合,因为webgrind 进行性能检测分析就是通过xdebug生成的日志文件进行编译分析的 那么这就需要们配置好xdebug,这个一般的php 版本都 ...

  5. SQL_server_2008_r2和visual studio 2010旗舰版的安装(2013-01-16-bd 写的日志迁移

    (以下操作是在Oracle VM virtualBox虚拟机中操作的,其实VMware Workstation 9虚拟机也挺不错的,不过用了很久的vmware想换个虚拟机用用 就暂时用Oracle V ...

  6. git的使用入门

    写作目的: 快速的上手git版本控制+github神器进行基本的版本同步操作. 怎么做? 对于任意一个代码项目,使用git_bash进入到代码目录 如果没有进行过初始化操作:应当使用git init  ...

  7. 进入saftmode解决方案

    Name node is in safe mode.The reported blocks 356 needs additional 2 blocks to reach the threshold 0 ...

  8. HDFS写数据和读数据流程

    HDFS数据存储 HDFS client上传数据到HDFS时,首先,在本地缓存数据,当数据达到一个block大小时.请求NameNode分配一个block. NameNode会把block所在的Dat ...

  9. 一个简单的同步集群的shell脚本

    编写一个xsync文件 然后放在/usr/local/bin 目录下面 xsync文件如下: #!/bin/bash #1 获取输入参数个数,如果没有参数,直接退出 pcount=$# if((pco ...

  10. JAVA API访问Hbase org.apache.hadoop.hbase.client.RetriesExhaustedException: Failed after attempts=32

    Java使用API访问Hbase报错: 我的hbase主节点是spark1   java代码访问hbase的时候写的是ip 结果运行程序报错 不能够识别主机名 修改主机名     修改主机hosts文 ...