点此看题面

大致题意: 一张无向图,要求你在去掉任意一个节点之后,剩余的每个节点都能到达一个救援出口,问至少需要几个救援出口。

第一步:\(Tarjan\)求割点

首先,我们要跑一遍\(Tarjan\)来求出割点

求完割点后,这样我们就能求出原图除了割点以外其他点所形成的若干个联通块(相当于把割点去掉之后形成的联通块)。

第二步:分类讨论

接下来,我们要对上面求出来的每一个联通块相邻的割点个数进行分类讨论:

  • 如果当前联通块相邻的割点个数为0

    显然对于这个联通块我们需要造2个救援出口,不然万一一个救援出口崩塌了,就出不去了。

    而方案数就相当于\(C_{Size}^2\),即\(\frac{Size(Size-1)}2\)。

  • 如果当前联通块相邻的割点个数为1

    那么对于这个联通块我们只需要造一个救援出口,因为就算救援出口崩塌了,还可以通过割点去另一个联通块内的救援出口。

    而方案数就是\(Size\)。

  • 如果当前联通块相邻的割点个数大于等于2

    那么对于这个联通块我们就不需要造救援出口了,因为就算某个割点崩塌了,我们依然可以通过另一个割点到达其它联通块的救援出口。

这样代码实现就不难了。

代码

#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define abs(x) ((x)<0?-(x):(x))
#define LL long long
#define ull unsigned long long
#define swap(x,y) (x^=y,y^=x,x^=y)
#define tc() (A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++)
#define pc(ch) (pp_<100000?pp[pp_++]=ch:(fwrite(pp,1,100000,stdout),pp[(pp_=0)++]=ch))
#define N 500
#define add(x,y) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y)
int pp_=0;char ff[100000],*A=ff,*B=ff,pp[100000];
using namespace std;
int n,m,ans1=0,ee=0,cnt=0,d=0,top=0,Exist[N+5],lnk[N+5],dfn[N+5],low[N+5],vis[N+5],IsCut[N+5],used[N+5],Size[N+5],tot[N+5],Stack[N+5];
ull ans2=1;
struct edge
{
int to,nxt;
}e[2*N+5];
inline void read(int &x)
{
x=0;static char ch;
while(!isdigit(ch=tc()));
while(x=(x<<3)+(x<<1)+ch-48,isdigit(ch=tc()));
}
inline void write(ull x)
{
if(x>9) write(x/10);
pc(x%10+'0');
}
inline void Tarjan(int x,int lst)//用Tarjan找割点
{
register int i,tot=0;
for(dfn[x]=low[x]=++d,i=lnk[x];i;i=e[i].nxt)
{
if(!(e[i].to^lst)) continue;
if(!dfn[e[i].to])
{
Tarjan(e[i].to,x),low[x]=min(low[x],low[e[i].to]),++tot;
if(lst&&low[e[i].to]>=dfn[x]) IsCut[x]=1;
}
else low[x]=min(low[x],dfn[e[i].to]);
}
if(!lst&&tot>=2) IsCut[x]=1;
}
inline void dfs(int x)//dfs遍历除去割点后的一个联通块
{
register int i,v;
for(Size[x]=vis[x]=1,tot[x]=0,i=lnk[x];i;i=e[i].nxt)//枚举每一个相邻的节点
{
if(IsCut[v=e[i].to])//如果这个节点是割点
{
if(!used[v]) used[Stack[++top]=v]=1,++tot[x];//如果这个割点没有访问过,就标记这个割点已访问,并将这个联通块相邻的割点个数加1
continue;//跳过
}
if(!vis[v]) dfs(v),Size[x]+=Size[v],tot[x]+=tot[v];//如果这个节点没被访问过,就去访问这个节点,并更新当前节点信息
}
}
int main()
{
register int i,j,x,y,T=0;
while(read(n),n)
{
for(ans1=ee=0,ans2=i=1;i<=n+1;++i) lnk[i]=dfn[i]=low[i]=IsCut[i]=Exist[i]=vis[i]=0;//初始化,将数组清空
for(i=1;i<=n;++i) read(x),read(y),add(x,y),add(y,x),Exist[x]=Exist[y]=1;
for(i=1;i<=n+1;++i) if(Exist[i]&&!dfn[i]) Tarjan(i,0);//Tarjan求割点
for(i=1;i<=n+1;++i)
{
if(!Exist[i]||IsCut[i]||vis[i]) continue;//如果这个节点不存在,或这个节点是割点,或这个节点已经被访问过,就跳过
top=0,dfs(i);//dfs遍历这个联通块
while(top) used[Stack[top--]]=0;//将访问过的割点标记为未访问
if(!tot[i]) ans1+=2,ans2*=1LL*Size[i]*(Size[i]-1)>>1;//如果这个联通块相邻的割点数为0,就需要加两个救援出口,方案数为Size(Size-1)/2
else if(tot[i]==1) ++ans1,ans2*=Size[i]; //如果这个联通块相邻的割点数为1,就需要加一个救援出口,方案数为Size
//如果这个联通块相邻的割点数大于等于2,就不需要加救援出口了
}
pc('C'),pc('a'),pc('s'),pc('e'),pc(' '),write(++T),pc(':'),pc(' '),write(ans1),pc(' '),write(ans2),pc('\n');//输出答案
}
return fwrite(pp,1,pp_,stdout),0;
}

【BZOJ2730】[HNOI2012] 矿场搭建(找割点)的更多相关文章

  1. BZOJ2730 [HNOI2012]矿场搭建 - Tarjan割点

    Solution 输入中没有出现过的矿场点是不用考虑的, 所以不用考虑只有 一个点 的点双联通分量. 要使某个挖矿点倒塌, 相当于割去这个点, 所以我们求一遍割点和点双联通分量. 之后的点双联通分量构 ...

  2. [BZOJ2730][HNOI2012]矿场搭建 点双 割点

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2852  Solved: 1344[Submit][Stat ...

  3. bzoj2730 [HNOI2012]矿场搭建 (UVAlive5135 Mining Your Own Business)

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1147  Solved: 528[Submit][Statu ...

  4. BZOJ 2730:[HNOI2012]矿场搭建(割点+连通块)

    [HNOI2012]矿场搭建 Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖 ...

  5. [HNOI2012]矿场搭建(割点)

    [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出 ...

  6. [BZOJ2730][HNOI2012]矿场搭建(求割点)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2730 分析: 如果坍塌的点不是割点,那没什么影响,主要考虑坍塌的点是割点的情况. 显然 ...

  7. BZOJ2730:[HNOI2012]矿场搭建(双连通分量)

    Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一 ...

  8. BZOJ2730 [HNOI2012]矿场搭建[点双连通分量]

    看到删去一个点,需要剩下的都和关键点连通,有端联想到找点双,因为他怎么删点都是连通的. 对于一个孤立的点双,至少要设两个关键点. 如果两个点双以一个割点连接,假设断掉这个割点,两个块至少要各设一个关键 ...

  9. BZOJ2730: [HNOI2012]矿场搭建

    传送门 图的连通性相关的必和割点割边之类的有关. 题目要求对于一个无向图,任意一点被删除后,所有点都和某些指定点是联通的. 这道题比较简单的做法就是求出来所有的块.对于一个块,如果块里有两个及两个以上 ...

  10. BZOJ2730——[HNOI2012]矿场搭建

    bzoj2730 & world final 2011 H 1.题目大意:就是有一个无向图,让你在里面选择点,使得,无论哪个点没了以后,其他的点都能到达你选择的任何一个点,输出最少 选择几个点 ...

随机推荐

  1. [poj 1837] Balance dp

    Description Gigel has a strange "balance" and he wants to poise it. Actually, the device i ...

  2. bzoj 3722: PA2014 Final Budowa

    3722: PA2014 Final Budowa Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 303  Solved: 108[Submit][St ...

  3. 洛谷P4762 [CERC2014]Virus synthesis(回文自动机+dp)

    传送门 回文自动机的好题啊 先建一个回文自动机,然后记$dp[i]$表示转移到$i$节点代表的回文串的最少的需要次数 首先肯定2操作越多越好,经过2操作之后的串必定是一个回文串,所以最后的答案肯定是由 ...

  4. Python使用Zero-Copy和Buffer Protocol实现高性能编程

    无论你程序是做什么的,它经常都需要处理大量的数据.这些数据大部分表现形式为strings(字符串).然而,当你对字符串大批量的拷贝,切片和修改操作时是相当低效的.为什么? 让我们假设一个读取二进制数据 ...

  5. Android Gradle 学习笔记(五):Gradle 任务 Task

    在之前的学习中,我们了解到Gradle的构建工作都是由Task组合完成的.本节我们就来介绍一下 Task - 任务. 一.多种方式创建任务 在Gradle中,我们可以有很多种方式来创建任务.为什么有这 ...

  6. 「BZOJ3600」没有人的算术 替罪羊树+线段树

    题目描述 过长--不想发图也不想发文字,所以就发链接吧-- 没有人的算术 题解 \(orz\)神题一枚 我们考虑如果插入的数不是数对,而是普通的数,这就是一道傻题了--直接线段树一顿乱上就可以了. 于 ...

  7. chrome安装文件点击没有反应(收藏用)

    备份Chrome浏览器用户数据 关闭Chrome浏览器,用Windows资源管理器打开%LOCALAPPDATA%\Google,复制Chrome文件夹到其它目录.   打开程序和功能管理功能 按下W ...

  8. codeforces C. Vasya And The Mushrooms (思维+模拟)

    题意:给定一个2*n的矩形方格,每个格子有一个权值,从(0,0)开始出发,要求遍历完整个网格(不能重复走一个格子),求最大权值和,(权值和是按照step*w累加,step步数从0开始). 转载: 题解 ...

  9. Django基础(5) ----基于双下划线的跨表查询,聚合查询,分组查询,F查询,Q查询

    一.基于双下划线的跨表查询 Django 还提供了一种直观而高效的方式在查询(lookups)中表示关联关系,它能自动确认 SQL JOIN 联系.要做跨关系查询,就使用两个下划线来链接模型(mode ...

  10. python大战机器学习——半监督学习

    半监督学习:综合利用有类标的数据和没有类标的数据,来生成合适的分类函数.它是一类可以自动地利用未标记的数据来提升学习性能的算法 1.生成式半监督学习 优点:方法简单,容易实现.通常在有标记数据极少时, ...