BZOJ3771 Triple(FFT+容斥原理)
思路比较直观。设A(x)=Σxai。先把只选一种的统计进去。然后考虑选两种,这个直接A(x)自己卷起来就好了,要去掉选同一种的情况然后除以2。现在得到了选两种的每种权值的方案数,再把这个卷上A(x)。得到这个后考虑去重,其中重复的就是选了两个相同的和另外一个,那么再把选两个相同的生成函数搞出来卷上A,减掉选三个相同的。把这个东西减掉之后再除以3。说了半天也不知道在说啥,总之是容斥原理很基础的应用。
有些卡精度,用long double才过,可能是我写丑了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 270000
#define double long double
const double PI=3.14159265358979324;
struct complex
{
double x,y;
complex operator +(const complex&a) const
{
return (complex){x+a.x,y+a.y};
}
complex operator -(const complex&a) const
{
return (complex){x-a.x,y-a.y};
}
complex operator *(const complex&a) const
{
return (complex){x*a.x-y*a.y,x*a.y+y*a.x};
}
}w[N],v[N],u[N];
int n,m,t,a[N],r[N];
long long f[N];
void DFT(int n,complex *a,int p)
{
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=;i<=n;i<<=)
{
complex wn=(complex){cos(*PI/i),p*sin(*PI/i)};
for (int j=;j<n;j+=i)
{
complex w=(complex){,};
for (int k=j;k<j+(i>>);k++,w=w*wn)
{
complex x=a[k],y=w*a[k+(i>>)];
a[k]=x+y,a[k+(i>>)]=x-y;
}
}
}
}
void mul(int n,complex *a,complex *b)
{
for (int i=;i<n;i++) r[i]=(r[i>>]>>)|(i&)*(n>>);
for (int i=;i<n;i++) a[i].y=a[i].x-b[i].x,a[i].x=a[i].x+b[i].x;
DFT(n,a,);
for (int i=;i<n;i++) a[i]=a[i]*a[i];
DFT(n,a,-);
for (int i=;i<n;i++) a[i].x=a[i].x/n/;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3771.in","r",stdin);
freopen("bzoj3771.out","w",stdout);
const char LL[]="%d %I64d\n";
#else
const char LL[]="%d %lld\n";
#endif
n=read();
for (int i=;i<=n;i++)
{
int x=read();
m=max(m,x);
w[x].x=v[x].x=f[x]=a[x]=;
}
t=;while (t<=(m<<)) t<<=;
mul(t,w,v);
for (int i=;i<=m;i++) if (a[i]) w[i<<].x--;
for (int i=;i<=m*;i++) f[i]+=w[i].x=(int)(w[i].x/+0.5);
for (int i=m*+;i<t;i++) w[i].x=w[i].y=;
for (int i=;i<=m;i++) v[i].x=a[i],v[i].y=;
for (int i=m+;i<t;i++) v[i].x=v[i].y=;
t=;while (t<=m*) t<<=;
mul(t,w,v);
for (int i=;i<t;i++) u[i].x=(i&)?:a[i>>];
for (int i=;i<=m;i++) v[i].x=a[i],v[i].y=;
for (int i=m+;i<t;i++) v[i].x=,v[i].y=;
mul(t,u,v);
for (int i=;i<=m;i++) if (a[i]) u[i*].x--;
for (int i=;i<=m*;i++) f[i]+=(long long)((w[i].x-u[i].x)/+0.5);
for (int i=;i<=m*;i++)
if (f[i]) printf(LL,i,f[i]);
return ;
}
BZOJ3771 Triple(FFT+容斥原理)的更多相关文章
- 【bzoj3771】Triple FFT+容斥原理
题目描述 樵夫的每一把斧头都有一个价值,不同斧头的价值不同.总损失就是丢掉的斧头价值和. 他想对于每个可能的总损失,计算有几种可能的方案. 注意:如果水神拿走了两把斧头a和b,(a,b)和(b,a)视 ...
- [BZOJ 3771] Triple(FFT+容斥原理+生成函数)
[BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成 ...
- BZOJ 3771 Triple FFT+容斥原理
解析: 这东西其实就是指数型母函数? 所以刚开始读入的值我们都把它前面的系数置为1. 然后其实就是个多项式乘法了. 最大范围显然是读入的值中的最大值乘三,对于本题的话是12W? 用FFT优化的话,达到 ...
- 【BZOJ3771】Triple 生成函数 FFT 容斥原理
题目大意 有\(n\)把斧头,不同斧头的价值都不同且都是\([0,m]\)的整数.你可以选\(1\)~\(3\)把斧头,总价值为这三把斧头的价值之和.请你对于每种可能的总价值,求出有多少种选择方案. ...
- 2018.12.31 bzoj3771: Triple(生成函数+fft+容斥原理)
传送门 生成函数经典题. 题意简述:给出nnn个数,可以从中选1/2/31/2/31/2/3个,问所有可能的和对应的方案数. 思路: 令A(x),B(x),C(x)A(x),B(x),C(x)A(x) ...
- SPOJ Triple Sums(FFT+容斥原理)
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream& ...
- bzoj3771: Triple(容斥+生成函数+FFT)
传送门 咳咳忘了容斥了-- 设\(A(x)\)为斧头的生成函数,其中第\(x^i\)项的系数为价值为\(i\)的斧头个数,那么\(A(x)+A^2(x)+A^3(x)\)就是答案(于是信心满满的打了一 ...
- bzoj 3771: Triple【生成函数+FFT+容斥原理】
瞎搞居然1A,真是吃鲸 n的范围只有聪明人能看见--建议读题3遍 首先看计数就想到生成函数,列出多项式A(x),然后分别考虑123 对于选一个的直接计数即可: 对于选两个的,\( A(x)^2 \), ...
- 【BZOJ 3771】 3771: Triple (FFT+容斥)
3771: Triple Time Limit: 20 Sec Memory Limit: 64 MBSubmit: 547 Solved: 307 Description 我们讲一个悲伤的故事. ...
随机推荐
- harbor Configuring Harbor with HTTPS Access
首先,下载fq (fanqiang) harbor-offline-installer-v1.2.0-rc5.tgz tar xvf harbor-offline-installer-<vers ...
- 如何修改Oracle服务IP地址
oracle数据库所在的机器更改IP地址后,发现无法连接,解决这个问题,需要修改一下对应的文件: F:\app\zhaohe\product\11.2.0\dbhome_1\NETWORK\ADMIN ...
- 快速排序的php实现
再来一个非常高级的排序算法,快速排序...这个算法是很高效的. 快速排序的思路是,找到一个分割点(中枢点 默认是列表第一个值),把原列表分隔成两部分,在分割点左侧的是都比它小的,在它右侧的是都比它大的 ...
- Luogu4899 IOI2018 Werewolf 主席树、Kruskal重构树
传送门 IOI强行交互可还行,我Luogu的代码要改很多才能交到UOJ去-- 发现问题是对边权做限制的连通块类问题,考虑\(Kruskal\)重构树进行解决. 对于图上的边\((u,v)(u<v ...
- LinqPad的变量比较功能
LinqPad是一个非常方便的C#工具(有免费版和收费版). 今天发现它的变量比较功能真是方便啊.且看3行代码产生如下结果: 说明:图中两个变量的成员属性值分别用红色和绿色背景标注:图很长,只截取了一 ...
- Window环境下配置MySQL 5.6的主从复制
原文:Window环境下配置MySQL 5.6的主从复制 1.环境准备 Windows 7 64位 MySQL 5.6 主库:192.168.103.207 从库:192.168.103.208 2. ...
- TiDB入门(四):从入门到“跑路”
前言 前面三章基本把 TiDB 的环境弄好了,也做了一下简单测试,有兴趣的同学可以看一下: TiDB 入门(一):TiDB 简介 TiDB 入门(二):虚拟机搭建 TiDB-Ansible 部署方案 ...
- Zabbix监控系统部署:配置详解
1. 全局配置 ListenPort ,监听端口 ,取值范围为1024-32767,默认端口10051 SourceIP,外发连接源地址 LogType,日志类型:单独日志文件,系统文件,控制台输出 ...
- 阿里云Centos搭建jdk环境
当我们开始了自己的开发,那么云服务器是一定少不了的,当然也有很多同学只是在本地做开发研究. 这里记录一下我自己在阿里云上搭建环境的过程. 趁着优惠的时候,我在阿里云上购买了ECS云服务器,并且搭载了C ...
- 该如何以正确的姿势插入SVG Sprites?
大家好,我是苏南,今天要给大家分享的是SVG sprite(也叫雪碧图),所谓雪碧图,当然就不是我们常喝的雪碧饮料(Sprites)哦,哈哈- 当下流程的移动端,手机型号太多太多,今天工作项目中突然发 ...