题目描述

众所周知,马后炮是中国象棋中很厉害的一招必杀技。"马走日字"。本来,如果在要去的方向有别的棋子挡住(俗
称"蹩马腿"),则不允许走过去。为了简化问题,我们不考虑这一点。马跟马显然不能在一起打起来,于是rly在
一天再次借来了许多许多的马在棋盘上摆了起来……但这次,他实在没兴趣算方案数了,所以他只想知道在N×M的
矩形方格中摆马使其互不吃到的情况下的最多个数。但是,有一个很不幸的消息,rly由于玩得太Happy,质量本来
就不好的棋盘被rly弄坏了,不过幸好只是破了其中的一些格子(即不能再放子了),问题还是可以继续解决的。

输入

一行,两个正整数N和M。
接下来N行,每行M个数,要么为0,表示没坏,要么为1,表示坏了。
N<=200,M<=200

输出

一行,输出最多的个数。

样例输入

2 3
0 1 0
0 1 0

样例输出

2
 
 
  这道题和BZOJ3175是一样的题,黑白染色之后跑二分图最大匹配,用矩阵大小-1的数目-二分图最大匹配数。
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
int next[1000001];
int to[1000001];
int val[1000001];
int head[1000001];
int tot=1;
int q[1000001];
int n,k,m;
int S,T;
int ans;
int x,y;
int d[1000001];
int c[1001][1001];
const int dx[]={-2,-1,1,2,2,1,-1,-2};
const int dy[]={1,2,2,1,-1,-2,-2,-1};
void add(int x,int y,int v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=0;
}
bool bfs(int S,int T)
{
int r=0;
int l=0;
memset(q,0,sizeof(q));
memset(d,-1,sizeof(d));
q[r++]=S;
d[S]=0;
while(l<r)
{
int now=q[l];
for(int i=head[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
if(d[T]==-1)
{
return false;
}
else
{
return true;
}
}
int dfs(int x,int flow)
{
if(x==T)
{
return flow;
}
int now_flow;
int used=0;
for(int i=head[x];i;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i]!=0)
{
now_flow=dfs(to[i],min(flow-used,val[i]));
val[i]-=now_flow;
val[i^1]+=now_flow;
used+=now_flow;
if(now_flow==flow)
{
return flow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
void dinic()
{
while(bfs(S,T)==true)
{
ans+=dfs(S,0x3f3f3f);
}
}
int main()
{
scanf("%d%d",&n,&m);
S=n*m+16;
T=n*m+28;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&c[i][j]);
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(c[i][j]==0)
{
c[i][j]=(i-1)*m+j;
if((i+j)%2==0)
{
add(S,c[i][j],1);
}
else
{
add(c[i][j],T,1);
}
}
else
{
k++;
c[i][j]=-1;
}
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(c[i][j]!=-1&&(i+j)%2==0)
{
for(int l=0;l<=7;l++)
{
int fx=dx[l]+i;
int fy=dy[l]+j;
if(fx>0&&fx<=n&&fy>0&&fy<=m&&c[fx][fy]!=-1)
{
add(c[i][j],c[fx][fy],0x3f3f3f);
}
}
}
}
}
dinic();
printf("%d",n*m-k-ans);
}

BZOJ4808马——二分图最大独立集的更多相关文章

  1. BZOJ 4808 马 二分图最大独立集

    题目应该就是最大独立集了吧,没什么了,平面图求最大独立集需要/2的, WQH说加直接+双向边考研过,结果真的过了,应该是匈牙利算法寻找的 时候更加快了吧.(方便找边) #include<cstd ...

  2. BZOJ4808: 马

    BZOJ4808: 马 https://lydsy.com/JudgeOnline/problem.php?id=4808 分析: 黑白染色,求二分图最大匹配即可. 代码: #include < ...

  3. 【Codevs1922】骑士共存问题(最小割,二分图最大独立集转最大匹配)

    题意: 在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入. 对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个 ...

  4. 长脖子鹿放置【洛谷P5030】二分图最大独立集变形题

    题目背景 众周所知,在西洋棋中,我们有城堡.骑士.皇后.主教和长脖子鹿. 题目描述 如图所示,西洋棋的“长脖子鹿”,类似于中国象棋的马,但按照“目”字攻击,且没有中国象棋“别马腿”的规则.(因为长脖子 ...

  5. HDU 3829 - Cat VS Dog (二分图最大独立集)

    题意:动物园有n只猫和m条狗,现在有p个小孩,他们有的喜欢猫,有的喜欢狗,其中喜欢猫的一定不喜欢狗,喜欢狗的一定不喜欢猫.现在管理员要从动物园中移除一些动物,如果一个小孩喜欢的动物留了下来而不喜欢的动 ...

  6. HDU3829(KB10-J 二分图最大独立集)

    Cat VS Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total ...

  7. BZOJ3175:[TJOI2013]攻击装置(二分图最大独立集)

    Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2),(x-2,y-1),(x+1,y-2), ...

  8. [luoguP3355] 骑士共存问题(二分图最大独立集)

    传送门 模型 二分图最大独立集,转化为二分图最大匹配,从而用最大流解决. 实现 首先把棋盘黑白染色,使相邻格子颜色不同. 把所有可用的黑色格子看做二分图X集合中顶点,可用的白色格子看做Y集合顶点. 建 ...

  9. 洛谷 - P3033 - 牛的障碍Cow Steeplechase - 二分图最大独立集

    https://www.luogu.org/fe/problem/P3033 二分图最大独立集 注意输入的时候控制x1,y1,x2,y2的相对大小. #include<bits/stdc++.h ...

随机推荐

  1. java 变量及数据类型、原码、反码、补码

    Java基础——变量及数据类型 变量的概念 内存中的一个存储区域 变量名+数据类型 可在同一类型范围内不断变化 为什么定义变量: 用于不断的存放同一类型的常量,并可以重复使用 使用变量注意: 变量的作 ...

  2. 『转』MySQL存储过程语法例子

    原文地址:http://blog.chinaunix.net/uid-540802-id-138873.html ------------------------- 自动生成随机数据存储过程 ---- ...

  3. CF1056E Check Transcription 字符串哈希

    传送门 暴力枚举\(0\)的长度,如果对应的\(1\)的长度也是一个整数就去check是否合法.check使用字符串哈希. 复杂度看起来是\(O(st)\)的,但是因为\(01\)两个数中数量较多的至 ...

  4. Bitcoin 使用及配置记录

    常用配置 bitcoin-qt.exe -testnet -printtoconsole -conf=D:\Bitcoin\bitcoin.conf -datadir=D:\Bitcoin\Data ...

  5. decorator, async/await, generator

    ////////////decorator////////// function aopFunc (target, key, descriptor) { console.log('aopFunc') ...

  6. 【转】浅谈JavaScript中forEach与each

    forEach是ES5中操作数组的一种方法,主要功能是遍历数组,例如: var arr = [1,2,3,4]; arr.forEach(alert); 等价于: var arr = [1, 2, 3 ...

  7. P5204 [USACO19JAN]Train Tracking 2

    P5204 [USACO19JAN]Train Tracking 2 毒毒题,对着嘤文题解看了贼久 首先考虑此题的一个弱化版本:如果输入的所有\(c_i\)相等怎么做 现在假设有\(len\)个数,取 ...

  8. C#使用FFMPEG推流,并且获取流保存在本地,随时取媒体进行播放!

    最近开发了基于C#的推流器一直不大理想,终于在不懈努力之后研究了一点成果,这边做个笔记:本文着重在于讲解下如何使用ffmpeg进行简单的推流,看似简单几行代码没有官方的文档很吃力.并获取流的源代码:如 ...

  9. 老牌阅读器nook2刷机整理

    kindle肯定是现在大多数人了解电纸书这个产品的开端,也给我留下了一段美好的回忆,不折腾,不死机,官方书城让人省心不少,不过作为半个折腾爱好者,kindle显然不符合我的理念,遂慢慢入了安卓电纸书的 ...

  10. ecna2017-Game of Throwns

    这题就是给你一个标号为0-n-1的环,然后给你M个操作,操作有两种,一种是直接给一个数,这数的正负代表我当前向前(向后)仍了xx个位置的球,或者给你一个撤销操作表示为 undo m,表示撤销最近的M个 ...