题目分析

首先考虑到最小值最大,二分答案。假设答案为k,显然这满足单调性。如果某个k使得这个情况下选不出。那么比k大的一定也选不出,所以二分答案。

接着我们可以贪心,当我们确认了k以后,一定会优先选费用最少的,那么可以按费用维护主席树,在树上查询最小的l升果汁。

题目代码暂时没拿到

[ctsc2018] 混合果汁 【可持久化线段树】【二分答案】的更多相关文章

  1. [BZOJ 2653] middle(可持久化线段树+二分答案)

    [BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...

  2. 洛谷P4344 脑洞治疗仪 [SHOI2015] 线段树+二分答案/分块

    !!!一道巨恶心的数据结构题,做完当场爆炸:) 首先,如果你用位运算的时候不小心<<打成>>了,你就可以像我一样陷入疯狂的死循环改半个小时 然后,如果你改出来之后忘记把陷入死循 ...

  3. 【BZOJ-2653】middle 可持久化线段树 + 二分

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1298  Solved: 734[Submit][Status][Discu ...

  4. BZOJ.2653.[国家集训队]middle(可持久化线段树 二分)

    BZOJ 洛谷 求中位数除了\(sort\)还有什么方法?二分一个数\(x\),把\(<x\)的数全设成\(-1\),\(\geq x\)的数设成\(1\),判断序列和是否非负. 对于询问\(( ...

  5. 洛谷P3994 Highway(树形DP+斜率优化+可持久化线段树/二分)

    有点类似NOI2014购票 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ 这个显然是可以斜率优化的... $\frac {f(j)-f(k)}{dep_j ...

  6. BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP

    题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...

  7. 洛谷P4632 [APIO2018] New Home 新家(动态开节点线段树 二分答案 扫描线 set)

    题意 题目链接 Sol 这题没有想象中的那么难,但也绝对不简单. 首先把所有的询问离线,按照出现的顺序.维护时间轴来处理每个询问 对于每个询问\((x_i, y_i)\),可以二分答案\(mid\). ...

  8. BZOJ 4552 [Tjoi2016&Heoi2016]排序 ——线段树 二分答案

    听说是BC原题. 好题,二分答案变成01序列,就可以方便的用线段树维护了. 然后就是区间查询和覆盖了. #include <map> #include <cmath> #inc ...

  9. [Luogu P2824] [HEOI2016/TJOI2016]排序 (线段树+二分答案)

    题面 传送门:https://www.luogu.org/problemnew/show/P2824 Solution 这题极其巧妙. 首先,如果直接做m次排序,显然会T得起飞. 注意一点:我们只需要 ...

  10. bzoj 2653 二分答案+可持久化线段树

    首先离散化,然后我们知道如果对于一个询问的区间[l1,r1],[l2,r2],我们二分到一个答案x,将[l1,r2]区间中的元素大于等于x的设为1,其余的设为-1,那么如果[l1,r1]的最大右区间和 ...

随机推荐

  1. ueditor保存出现 从客户端(Note="<p>12345</p>")中检测到有潜在危险的 Request.Form 值

    检测到有潜在危险的 Request.Form 值   这种问题是因为你提交的Form中有HTML字符串,例如你在TextBox中输入了html标签,或者在页面中使用了HtmlEditor组件等,解决办 ...

  2. PMS-授权中心

    概述 授权中心用基于角色的访问控制思想(RBAC-Role Based Access Control)来实现各个业务系统的功能权限及数据权限控制.功能权限是指能否进入页面及使用页面上的操作.数据权限控 ...

  3. JSON WEB TOKEN,简单谈谈TOKEN的使用及在C#中的实现

    十年河东,十年河西,莫欺少年穷. 学无止境,精益求精. 突然发现整个十月份自己还没有写一篇博客......哎,说出来都是泪啊,最近加班实在实在实在是太多了,真的没有多余的时间写博客.这不,今天也在加班 ...

  4. CF1146 Forethought Future Cup Elimination Round Tutorial

    CF1146 Forethought Future Cup Elimination Round Tutorial 叮,守夜冠军卡 https://codeforces.com/blog/entry/6 ...

  5. ETL流程介绍及常用实现方法

    ETL是英文Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract).转换(transform).加载(load)至目的端的过程.常见于数据仓库开发中将数 ...

  6. Python-习题-11

    1,内容回顾列表:增 append insert extend 删 remove pop clear del 改 li[索引] = '被修改的内容' li[切片]:'被修改的内容' 查 for循环 r ...

  7. javaScript常用API合集

    节点 1.1 节点属性 Node.nodeName   //返回节点名称,只读 Node.nodeType   //返回节点类型的常数值,只读 Node.nodeValue  //返回Text或Com ...

  8. Linux内核分析 期末总结

    Linux内核分析 期末总结 一.知识概要 1. 计算机是如何工作的 存储程序计算机工作模型:冯诺依曼体系结构 X86汇编基础 会变一个简单的C程序分析其汇编指令执行过程 2. 操作系统是如何工作的 ...

  9. atcoder A - Frog 1(DP)

    A - Frog 1 Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement There a ...

  10. Beta阶段敏捷冲刺二

    一.举行站立式会议 1.当天站立式会议照片一张 2.团队成员报告 林楚虹 (1) 昨天已完成的工作:连接上数据库 (2) 今天计划完成的工作:修改学习界面单词获取 (3) 工作中遇到的困难:虽然前天询 ...