这儿只是一个简单说明/概括/总结。
原理见这:
https://www.cnblogs.com/cjyyb/p/9185093.html
https://www.cnblogs.com/zhoushuyu/p/9187319.html


首先计算\[g(n,j)=\sum_if(i),\quad i是质数\ 或\ i的最小质因子严格大于P_j\\g(n,j)=\begin{cases}g(n,j-1)&P_j^2\gt n\\ g(n,j-1)-f(P_j)\left[g(\frac{n}{P_j},j-1)-\sum_{i=1}^{j-1}f(P_i)\right]&P_j^2\le n\end{cases}\]

类似埃氏筛法,\(P(n,j)\)就是筛\(j\)次后剩下的数的\(f\)和,再加上所有质数\(p\)的\(f(p)\)之和。

\(P_j^2>n\)时,这一次筛不会筛掉任何数,所以就是\(g(n,j-1)\)。

\(P_j^2\leq n\)时,考虑第\(j\)次筛掉了哪些数,也就是最小质因子是\(P_j\)的那些数。因为是积性函数,所以我们直接提出一个\(P_j\)(来保证它含\(P_j\))。
要被筛掉的数在除掉一个\(P_j\)后的最小质因子一定仍大于等于\(P_j\)(否则在之前就被筛掉了),这符合\(g(\frac{n}{P_j},j-1)\)的定义。所以减掉一个\(f(P_j)g(\frac{n}{P_j},j-1)\)。但是\(g(\frac{n}{P_j},j-1)\)还包含所有质数的\(f(p)\)之和,所以再加上\(\sum_{i=1}^{j-1}f(P_i)\)。

那初值呢?先把所有合数的\(f\)的计算方式看做和质数一样,以便对所有数的\(f\)值快速求个和,用它作为\(g(n,0)\)(注意这里不考虑\(1\))。这样虽然合数的\(f\)值是假的,但是\(g(n,|P|)\)还是能正确的表示所有质数\(p\)的\(f(p)\)之和。


现在考虑算上合数的\(f\)值求和。令\[S(n,j)=\sum_if(i),\quad i是质数\ 或\ i的最小质因子大于等于P_j\]

我们把\(S(n,j)\)分两部分计算,一是所有质数的贡献,二是所有合数的贡献。对于\(f(1)\)最后单独算下。

那么所有质数的贡献可以用\(g\)表示,也就是\(g(n,j)-\sum_{i=1}^{j-1}f(P_i)\)(因为最小质因子要大于等于\(P_j\),所以把那些减掉)。

对于合数,枚举这个合数的最小质因子及其次数,用\(f\)是积性函数的性质直接算:\[S(n,j)=g(n,j)-\sum_{i=1}^{j-1}f(P_i)+\sum_{k=j}^{P_k^2\leq n}\sum_{e=1}^{P_k^{e+1}\leq n}\left[f(P_k^e)\times S(\frac{n}{P_k^e},k+1)+f(P_k^{e+1})\right]\]

\(f(P_k^{e+1})\)是\(S\)没有考虑的那部分(就是\(P_k^{e+1}\),质数的若干次幂这样的合数,而\(S(..,k+1)\)就把这些数忽略掉了)。

答案就是\(S(n,1)+f(1)\)。


流程:

  1. 把所有合数看做质数,求一遍和,得到初值\(g(n,0)\)。同时预处理一个\(f(P_i)\)的前缀和。

  2. 用\[g(n,j)=\begin{cases}g(n,j-1)&P_j^2\gt n\\ g(n,j-1)-f(P_j)\left[g(\frac{n}{P_j},j-1)-\sum_{i=1}^{j-1}f(P_i)\right]&P_j^2\le n\end{cases}\]
    计算\(g(x,|P|)\)(把第二维滚动掉)。

  3. 用\[S(n,j)=g(n,j)-\sum_{i=1}^{j-1}f(P_i)+\sum_{k=j}^{P_k^2\leq n}\sum_{e=1}^{P_k^{e+1}\leq n}\left[f(P_k^e)\times S(\frac{n}{P_k^e},k+1)+f(P_k^{e+1})\right]\]
    计算\(S(n,1)+f(1)\)。

计算\(S,g\)的复杂度都是\(O(\frac{n^{\frac34}}{\log n})\)。

对于其它积性函数,同\(g\)一样计算。

实现上,筛\(sqrt(n)\)内的质数这一步往往可以省略,见这里


例题:
LOJ6235 区间素数个数
BZOJ3944 Sum
LOJ6053 简单的函数

以后要做的题:
https://cmxrynp.github.io/2018/12/03/Min-25筛学习笔记/
https://blog.csdn.net/koishi_514/article/details/79485534
https://blog.csdn.net/HOWARLI/article/details/80339931

Min_25筛 学习笔记的更多相关文章

  1. Min_25 筛 学习笔记

    原文链接https://www.cnblogs.com/zhouzhendong/p/Min-25.html 前置技能 埃氏筛法 整除分块(这里有提到) 本文概要 1. 问题模型 2. Min_25 ...

  2. min_25筛学习笔记【待填坑】

    看见ntf和pb两位大佬都来学了,然后就不自觉的来学了. 我们考虑这样一个问题. $$ans=\sum_{i=1}^nf(i)$$其中$1\leq n\leq 10^{10}$ 其中$f(i)$是一个 ...

  3. 洲阁筛 & min_25筛学习笔记

    洲阁筛 给定一个积性函数$F(n)$,求$\sum_{i = 1}^{n}F(n)$.并且$F(n)$满足在素数和素数次幂的时候易于计算. 显然有: $\sum_{i = 1}^{n} F(n) = ...

  4. Min_25筛学习笔记

    感觉好好用啊 Luogu上的杜教筛模版题一发 Min_25抢到了 rank1 $ Updated \ on 11.29 $被 STO txc ORZ踩爆啦 前言 $ Min$_$25$筛可以求积性函数 ...

  5. $Min\_25$筛学习笔记

    \(Min\_25\)筛学习笔记 这种神仙东西不写点东西一下就忘了QAQ 资料和代码出处 资料2 资料3 打死我也不承认参考了yyb的 \(Min\_25\)筛可以干嘛?下文中未特殊说明\(P\)均指 ...

  6. Powerful Number 筛学习笔记

    Powerful Number 筛学习笔记 用途 \(Powerful\ number\) 筛可以用来求出一类积性函数的前缀和,最快可以达到根号复杂度. 实现 \(Powerful\ number\) ...

  7. Min_25筛 学习小记

    前言 为什么叫学习小记呢?因为暂时除了模板题就没有做其他的东西了.(雾 这个东西折磨了我一整天,看得我身不如死,只好结合代码理解题解,差点死在机房.(话说半天综合半天竞赛真是害人不浅) 为了以后忘了再 ...

  8. min-25筛学习笔记

    Min_25筛简介 \(\text{min_25}\)筛是一种处理一类积性函数前缀和的算法. 其中这类函数\(f(x)\)要满足\(\sum_{i=1}^{n}[i\in prime]\cdot f( ...

  9. min_25 筛学习小记

    min_25筛 由 dalao min_25 发明的筛子,据说时间复杂度是极其优秀的 \(O(\frac {n^{\frac 3 4}} {\log n})\),常数还小. 1. 质数 \(k\) 次 ...

随机推荐

  1. bzoj 1812

    什么鬼noip互测题... 这题很显然是树形dp,但设计状态以及转移是个难点 记状态f[i][j][k]表示以i为根节点的子树,离i最近的祖宗节点编号为j放了虫洞(伐木场?),i的子树内放了k个伐木场 ...

  2. 20165314 学习基础和C语言基础调查

    技能学习心得 你有什么技能比大多人(超过90%以上)更好?针对这个技能的获取你有什么成功的经验?与老师博客中的学习经验有什么共通之处? 从小我的父母就逼着我学习很多技能,比如钢琴,围棋,书法等,不过很 ...

  3. vue用webpack打包时引入es2015插件

    1.安装依赖包 $ npm install --save-div babel-preset-es2015 ps:babel-loader.babel-core应该是默认装好的,如果没有安装,请重新安装 ...

  4. 抓包工具Charles Proxy v4.1.1破解版下载

    移动开发抓包工具Charles Proxy破解版下载 下载Charles Proxy版本,http://charles.iiilab.com/或 https://www.charlesproxy.co ...

  5. jenkins上节点显示swap空间不足解决方案

    查看内存占用情况:free   -m   1.swap分区原理: swap分区在系统的物理内存不够用的时候,把物理内存中的一部分空间释放出来,以供当前运行的程序使用.那些被释放的空间可能来自一些很长时 ...

  6. 【转】asp.net Core 系列【二】—— 使用 ASP.NET Core 和 VS2017 for Windows 创建 Web API

    在本教程中,将生成用于管理“待办事项”列表的 Web API. 不会生成 UI. 概述 以下是将创建的 API: API 描述 请求正文 响应正文 GET /api/todo 获取所有待办事项 无 待 ...

  7. tomcat中浏览器重新选择下.就解决该问题了

  8. JAVA代码中可使用中文类名,变量名,对象名,方法名.

    java程序 兔子 public class 兔子{ //构造方法 public 兔子(){} public void 吃草(){ System.out.println("兔子在吃草&quo ...

  9. 几种stl的应用

    1.set(特点:插入后元素自动从小到大排序) set< int > ::iterator it;//迭代器,可以指向同类型的集合 q.find(k);//其中一个元素k的地址 q.cou ...

  10. jquery toast插件

    插件描述:Toaster.js是一款Material Design风格jquery toast插件.Toaster.js提供5种主题,以及众多配置参数,用于显示toast类型的消息提示框.兼容性如下: ...