题目传送门

题意:给出$N$个节点$M$条边的有向图,边权为$w$,求其最小割与达到最小割的情况下割掉边数的最小值。$N \leq 32,M \leq 1000,w\leq 2 \times 10^6$


$N \leq 32$emmmm

求最小割直接套EK或者Dinic模板即可,但是如何求最少边数?

考虑将所有边权$w$变为$w \times 1000 + 1$,这样求出的最小割为$All$,则原图的最小割为$\frac{All}{1000}$,而最小割的最小边数为$All mod 1000$。

 #include<bits/stdc++.h>
 #define ccc 10001
 using namespace std;
 struct Edge{
     long long end , upEd , w;
 }Ed[];
 ] , dep[] , N , cntEd;

 inline void addEd(long long a , long long b , long long c){
     Ed[cntEd].end = b;
     Ed[cntEd].w = c;
     Ed[cntEd].upEd = head[a];
     head[a] = cntEd++;
 }

 queue < long long > q;
 inline bool bfs(){
     while(!q.empty())
         q.pop();
     memset(dep ,  , sizeof(dep));
     dep[] = ;
     q.push();
     while(!q.empty()){
         long long t = q.front();
         q.pop();
          ; i = Ed[i].upEd)
             if(!dep[Ed[i].end] && Ed[i].w){
                 dep[Ed[i].end] = dep[t] + ;
                 if(Ed[i].end == N)
                     ;
                 q.push(Ed[i].end);
             }
     }
     ;
 }

 long long dfs(long long dir , long long minN){
     if(dir == N)
         return minN;
     )
         ;
     ;
      ; i = Ed[i].upEd)
          && Ed[i].w){
             long long t = dfs(Ed[i].end , min(minN , Ed[i].w));
             sum += t;
             Ed[i].w -= t;
             Ed[i ^ ].w += t;
             minN -= t;
         }
     return sum;
 }

 int main(){
     memset(head , - , sizeof(head));
      , cnt = ;
     cin >> N >> M;
     while(M--){
         long long a , b , c;
         cin >> a >> b >> c;
         addEd(a , b , c * ccc + );
         addEd(b , a , );
     }
     while(bfs())
         ans += dfs( , 1ll<<);
     cout << ans / ccc << ' ' << ans % ccc;
     ;
 }

Luogu1344 追查坏牛奶 最小割的更多相关文章

  1. luogu 1344 追查坏牛奶(最小割)

    第一问求最小割. 第二问求割边最小的最小割. 我们直接求出第二问就可以求出第一问了. 对于求割边最小,如果我们可以把每条边都附加一个1的权值,那么求最小割是不是会优先选择1最少的边呢. 但是如果直接把 ...

  2. 【Luogu1344】追查坏牛奶(最小割)

    [Luogu1344]追查坏牛奶(最小割) 题面 洛谷 题解 裸的最小割,但是要求边的数量最小. 怎么办呢?给每条边的权值额外加上一个很大的值就了. #include<iostream> ...

  3. USACO 4.4.2 追查坏牛奶 oj1341 网络流最小割问题

    描述 Description 你第一天接手三鹿牛奶公司就发生了一件倒霉的事情:公司不小心发送了一批有三聚氰胺的牛奶.很不幸,你发现这件事的时候,有三聚氰胺的牛奶已经进入了送货网.这个送货网很大,而且关 ...

  4. [USACO Section 4.4]追查坏牛奶Pollutant Control (最小割)

    题目链接 Solution 一眼看过去就是最小割,但是要求割边最少的最小的割. 所以要用骚操作... 建边的时候每条边权 \(w = w * (E+1) + 1;\) 那么这样建图跑出来的 \(max ...

  5. 洛谷 P1344 追查坏牛奶Pollutant Control —— 最小割

    题目:https://www.luogu.org/problemnew/show/P1344 就是求最小割: 但是还要边数最小,所以把边权都*1001+1,这样原来流量部分是*1001,最大流一样的不 ...

  6. USACO Section 4.4 追查坏牛奶Pollutant Control

    http://www.luogu.org/problem/show?pid=1344 题目描述 你第一天接手三鹿牛奶公司就发生了一件倒霉的事情:公司不小心发送了一批有三聚氰胺的牛奶.很不幸,你发现这件 ...

  7. 洛谷 P1344 [USACO4.4]追查坏牛奶Pollutant Control 解题报告

    P1344 [USACO4.4]追查坏牛奶Pollutant Control 题目描述 你第一天接手三鹿牛奶公司就发生了一件倒霉的事情:公司不小心发送了一批有三聚氰胺的牛奶.很不幸,你发现这件事的时候 ...

  8. 洛谷 P1344 [USACO4.4]追查坏牛奶Pollutant Control

    题目描述 你第一天接手三鹿牛奶公司就发生了一件倒霉的事情:公司不小心发送了一批有三聚氰胺的牛奶.很不幸,你发现这件事的时候,有三聚氰胺的牛奶已经进入了送货网.这个送货网很大,而且关系复杂.你知道这批牛 ...

  9. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

随机推荐

  1. Python 关于Python函数参数传递方式的一点探索

    关于Python函数参数传递方式的一点探索 by:授客 QQ:1033553122 实践代码 #!/usr/bin/env python # -*- coding:utf-8 -*- __author ...

  2. ViewPager防止Fragment销毁以及取消Fragment的预加载

    存在的问题 1. 默认情况下,ViewPager会根据setOffscreenPageLimit()方法设置的大小,自动预加载2. 还是根据setOffscreenPageLimit()方法设置的大小 ...

  3. Android--字符串和Drawable之间互相转化

    //将字符串转化成Drawable public synchronized static Drawable StringToDrawable(String icon) { if (icon == nu ...

  4. etcd raft如何实现Linearizable Read

    Linearizable Read通俗来讲,就是读请求需要读到最新的已经commit的数据,不会读到老数据. 对于使用raft协议来保证多副本强一致的系统中,读写请求都可以通过走一次raft协议来满足 ...

  5. 设计模式--Proxy

    转自:http://blog.csdn.net/dan_xp/article/details/1820852 最近一直在看java的设计模式 ,感觉印象最深刻的就是"面向接口编程" ...

  6. 在LINUX上部署SOFA

    JDK1.6环境变量 vim /etc/profile JAVA_HOME=/usr/local/java/jdk1.6.0_45PATH=$JAVA_HOME/bin:$PATHCLASSPATH= ...

  7. 【PAT】B1060 爱丁顿数(25 分)

    逻辑问题,对我来说还是挺有难度的,一开始想不通 我输入数据并以数据为下标,数据出现次数为内容存储 然后从后遍历计算所有大于当前下标的元素出现的次数 最后遍历一遍确定是否为爱丁顿数,如果大于当前已经找到 ...

  8. 4.92Python数据类型之(7)字典

    目录 目录 前言 (一)字典的基本知识 ==1.字典的基本格式== (二)字典的操作 ==1.字典元素的增加== ==2.字典值的查找== ==3.字典的修改== ==4.字典的删除== ==5.字典 ...

  9. Python进阶(二)

    高阶函数 1.把函数作为参数传入,这样的函数称为高阶函数,函数式编程就是指这种高度抽象的编程范式. 2.Python内建了map( )和reduce( ) 函数 map()函数接收两个参数,一个是函数 ...

  10. 转:git合并冲突解决方法

    git合并冲突解决方法 1.git merge冲突了,根据提示找到冲突的文件,解决冲突 如果文件有冲突,那么会有类似的标记 2.修改完之后,执行git add 冲突文件名 3.git commit注意 ...