Luogu P2522 [HAOI2011]Problem b
如果你做过[Luogu P3455 POI2007]ZAP-Queries就很好办了,我们发现那一题求的是\(\sum_{i=1}^a\sum_{j=1}^b[\gcd(i,j)=d]\),就是这道题的特殊情况。
因此我们直接令\(\operatorname{calc}(x,y,d)\)表示\(\sum_{i=1}^x\sum_{j=1}^y[\gcd(i,j)=d]\),然后直接容斥即可:
\]
关于\(\operatorname{calc}(x,y,d)\)的求法可以看上面那题的Sol,这里不再赘述。
CODE
#include<cstdio>
#include<cctype>
#define RI register int
using namespace std;
const int P=50005;
int t,a,b,c,d,k,prime[P+5],cnt,mu[P+5],sum[P+5]; bool vis[P+5];
class FileInputOutput
{
private:
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
#define pc(ch) (Ftop<S?Fout[Ftop++]=ch:(fwrite(Fout,1,S,stdout),Fout[(Ftop=0)++]=ch))
#define S 1<<21
char Fin[S],Fout[S],*A,*B; int Ftop,pt[25];
public:
FileInputOutput() { A=B=Fin; Ftop=0; }
inline void read(int &x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));
}
inline void write(long long x)
{
if (!x) return (void)(pc(48),pc('\n')); RI ptop=0;
while (x) pt[++ptop]=x%10,x/=10; while (ptop) pc(pt[ptop--]+48); pc('\n');
}
inline void Fend(void)
{
fwrite(Fout,1,Ftop,stdout);
}
#undef tc
#undef pc
#undef S
}F;
#define Pi prime[j]
inline void Euler(void)
{
vis[1]=mu[1]=1; RI i,j; for (i=2;i<=P;++i)
{
if (!vis[i]) prime[++cnt]=i,mu[i]=-1;
for (j=1;j<=cnt&&i*Pi<=P;++j)
{
vis[i*Pi]=1; if (i%Pi) mu[i*Pi]=-mu[i]; else break;
}
}
for (i=1;i<=P;++i) sum[i]=sum[i-1]+mu[i];
}
#undef Pi
inline int min(int a,int b)
{
return a<b?a:b;
}
inline long long calc(int n,int m,int d)
{
long long ans=0; int lim=min(n/d,m/d);
for (RI l=1,r;l<=lim;l=r+1)
{
r=min(n/(n/l),m/(m/l)); ans+=1LL*(n/(l*d))*(m/(l*d))*(sum[r]-sum[l-1]);
}
return ans;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
for (Euler(),F.read(t);t;--t)
{
F.read(a); F.read(b); F.read(c); F.read(d); F.read(k);
F.write(calc(b,d,k)-calc(a-1,d,k)-calc(b,c-1,k)+calc(a-1,c-1,k));
}
return F.Fend(),0;
}
Luogu P2522 [HAOI2011]Problem b的更多相关文章
- 【题解】Luogu P2522 [HAOI2011]Problem b
原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 我们看题面,让求对于区间\([a,b]\)内的整数x和\([c,d]\)内的y,满足$ gcd(x,y)=k$的数对的个数 我们珂以跟容斥原理(二 ...
- Luogu P2522 [HAOI2011]Problem b 莫比乌斯反演
设$f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)==d],\\F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lflo ...
- P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...
- 洛谷P2522 - [HAOI2011]Problem b
Portal Description 进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)和\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1} ...
- [luogu] P2519 [HAOI2011]problem a (贪心)
P2519 [HAOI2011]problem a 题目描述 一次考试共有n个人参加,第i个人说:"有ai个人分数比我高,bi个人分数比我低."问最少有几个人没有说真话(可能有相同 ...
- Luogu P2519 [HAOI2011]problem a
题目链接 \(Click\) \(Here\) \(DP\)神题.以后要多学习一个,练一练智商. 关键点在于把"有\(a_i\)个人分数比我高,\(b_i\)个人分数比我低"这句话 ...
- P2522 [HAOI2011]Problem b
还有三倍经验的吗(窒息) 思路 其实就是P3455套了个简单的容斥 把问题转化成f(n,m,k)-f(a-1,m,k)-f(n,b-1,k)+f(a-1,b-1,k)就可以了 和p3455几乎一样的代 ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Quer ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
随机推荐
- Asp.Net Core 使用Quartz基于界面画接口管理做定时任务
今天抽出一点点时间来造一个小轮子,是关于定时任务这块的. 这篇文章主要从一下几点介绍: 创建数据库管理表 创建web项目 引入quarzt nuget 包 写具体配置操作,实现定时任务处理 第一步:创 ...
- LeetCode题解之Second Minimum Node In a Binary Tree
1.题目描述 2.问题分析 使用set. 3.代码 set<int> s; int findSecondMinimumValue(TreeNode* root) { dfs(root); ...
- Spring boot 入门篇
详见:https://www.cnblogs.com/ityouknow/p/5662753.html 什么是Spring Boot Spring Boot 是由 Pivotal 团队提供的全新框架, ...
- 【 PostgreSQL】查询某模式下所有表的分布键信息
想看下某模式下所有表创建的分布键是否合理,查找系统表文档拼出如下sql,亲们如果有更好的sql或者意见欢迎留言! SELECT aaa.nspname AS "模式名", ...
- JDBC学习笔记之JDBC简介
1. 引言 JDBC API是一种Java API,可以访问任何类型的表格数据,特别是存储在关系数据库中的数据. JDBC可以帮助我们编写下列三种编程活动的java应用程序: 1.连接到数据源,如数据 ...
- golang中数组与切片的区别
初始化:数组需要指定大小,不指定也会根据初始化的自动推算出大小,不可改变 数组: a := [...],,} a := [],,} 切片: a:= [],,} a := make([]) a := m ...
- Hibernate Tools生成注释
原文:http://www.blogjava.net/pauliz/archive/2009/11/13/302162.html 有同学需要修改后的Hibernate Tools整个tool我就不上传 ...
- <20180929>任性的甲方
今天参观了朋友在监督的新项目, 这个项目周期大概在6到9个月,预计本年度11月竣工. 总共大楼有五层, 施工面积在一万平米左右. 位于三楼的机房使用的设备有点高大上,发上来鉴赏一下. 双专线, 第二条 ...
- Python--详解Python中re.sub
给出定义: re.sub(pattern, repl, string, count=0, flags=0) Return the string obtained by replacing the le ...
- 【转】UEFI是什么?与BIOS的区别在哪里?UEFI详解!
前几天在帮同事小何笔记本电脑安装64位 Windows 7 的时候,遇到一个从来没有碰到过的问题,使用光盘安装时,提示:Windows无法安装到这个磁盘.选中的磁盘具有MBR分区表.在EFI系统上,W ...