使用pandas的部分问题汇总
pandas(我所用版本0.17)是一个强大数据处理库,在开发金融类系统中我应用到了pandas.Dataframe数据类型,它的数据结构类似一张图表(如下图所示),左边一列为index既行的索引:

图1
下面主要介绍在开发中使用方法:
1,DataFrame将1分钟K线数据合成5分钟数据
pd_1m = pd.DataFrame() #已有1分钟K线数据
#合成新K线的前提是df的数据的index必须是时间
pd_1m = pd_1m.set_index('kline_time') #将时间戳设置为index
#设置df数据中每列的规则
ohlc_rule = {
'open': 'first',#open列:序列中第一个的值
'high': 'max',#high列:序列中最大的值
'low': 'min',#low列:序列中最小的值
'close': 'last',#close列:序列中最后一个的值
'volume': 'sum',#volume列:将所有序列里的volume值作和
'amount': 'sum'#amount列:将所有序列里的amount值作和
}
#合成5分钟K线并删除为空的行 参数 closed:left类似向上取值既 09:30的k线数据是包含09:30-09:35之间的数据
pd_5m = pd_1m.resample('5min', how=ohlc_rule, closed='left', label='left').dropna(axis=0, how='any')
#dropna(axis=0, how='any') axis参数0:针对行进行操作 1:针对列进行操作 how参数any:只要包含就删除 all:全是为NaN才删除
2,DataFrame的行遍历及过滤
import pandas as pd
import numpy as np dates = pd.date_range('2020-01-01',periods=6)
df = pd.DataFrame(np.random.rand(6,4),index=dates,columns=['a','b','c','d']) # iloc根据行号来取值
print(df.iloc[3]) # 第三行
print(df.iloc[1:4]) # 左闭右开
# loc根据行头来取值 此数据行头是日期
print(df.loc["2020-01"]) # 行头包含2020-01字符串的所有行
print(df.loc["2020-01-02": "2020-01-04",["b","c"]]) # 行头再这个范围内 可指定显示某几列
# 根据列来筛选
print(df["a"]) # 获取单列
print(df[["a","b"]]) # 获取多列
# 以下根据条件筛选也可用于loc函数中
print(df[df['a']>0]) # a列数据大于0的行筛选出来
print(df[~df['a'].isin([2,3,5])]) # ~表示不满足该条件的其他数据 isin表示在某个list中
print(df[(df['a'].isin([2, 3])) & (df['b'] != 0)]) # &与;|表示或 ;运算符:!=不等于 == > < 以此类推等等
# df行遍历
for index,row in enumerate(df.iterrows()):
# row既每行,包含行头及行数据
print(index,row[0],row[1])
3,pandas中转化数据及变更类型
import pandas as pd
import numpy as np # 整理,格式化数据
dates = pd.date_range('2020-01-01',periods=6)
df = pd.DataFrame(np.random.rand(6,4),index=dates,columns=['a','b','c','d'])
df["e"] = pd.Series([1,1,3,4,4,2],index=dates) # apply根据用户执行axis来计算得到新行/列数据 1=列 默认行0
f_col = df.apply(lambda k: k['a']*k['b'] if k['c'] >0.5 else k['a']*k['c'], axis=1) # map是Series的函数通过mapping来生成新的数据行/列 可以使用dict,也可函数
print(df["e"].map({1: 9}))
print(df["e"].map(lambda x: 0 if x > 3 else 1)) # applymap 处理全部的行业数据
def cal_custom(data):
return float("%.2f" % data)
print(df.applymap(cal_custom)) # 在统计分析中会用到变量类型装换 需要转为分类型变量
z = pd.Series([3,4,6,6,4])
z = z.astype("category") # 分类型变量(分类型变量本身可以是数字格式)
# 转换为数字类型
pd.to_numeric(z, errors='coerce') # ignore
# 指定分类型变量为指定顺序的有序分类型变量
print(z.cat.reorder_categories([4,6,3]))
# pandas中pandas.tslib.Timestamp的计算及转换
dtime = pandas.tslib.Timestamp()
dtime = dtime + np.timedelta64(8, 'h')#给时间加上8小时 np为numpy 参数 h 小时 m 分钟
dtime = dtime.strftime('%Y-%m-%d %H:%M:%S')#转换为字符格式
4,其他
print(df.cov()) # 协方差矩阵
print(df.corr()) # 相关系数矩阵
print(df.corrwith(df["a"])) # 某列与其他列的相关系数结果
print(df.groupby(["a","b"]).agg(['mean','std','count','max','sum'])) # std标准差
以上主要为开发问题中遇到的场景,有局限性,希望大家能用上~
使用pandas的部分问题汇总的更多相关文章
- pandas知识点脑图汇总
参考文献: [1]Pandas知识点脑图汇总
- pandas(三)汇总和计算描述统计
pandas对象有一些常用的数学和统计的方法,大部分都属于约简或汇总统计. SUM方法 DataFrame对象的sum方法,返回一个含有列小计的Series >>> df = Dat ...
- 用Python的pandas框架操作Excel文件中的数据教程
用Python的pandas框架操作Excel文件中的数据教程 本文的目的,是向您展示如何使用pandas 来执行一些常见的Excel任务.有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其 ...
- Python_科学计算平台__pypi体系的numpy、scipy、pandas、matplotlib库简介
1.numpy--基础,以矩阵为基础的数学计算模块,纯数学 存储和处理大型矩阵. 这个是很基础的扩展,其余的扩展都是以此为基础. 快速学习入口 https://docs.scipy.org/doc/n ...
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ...
- 【学习】数据处理基础知识(汇总和计算描述统计)【pandas】
pd对象拥有一组常用的数学和统计方法.大部分都属于约简和汇总统计,用于从Series中单个值,如sum 和 mean 或从DF的行或列中提取一个Series. 1. 描述和汇总统计方法 #汇总和计算描 ...
- Pandas基本功能之层次化索引及层次化汇总
层次化索引 层次化也就是在一个轴上拥有多个索引级别 Series的层次化索引 data=Series(np.random.randn(10),index=[ ['a','a','a','b','b', ...
- Pandas汇总和处理缺失数据
汇总的函数 方法 说明 count 非NA的值数量 describe 针对Series和DataFrame列计算汇总统计 min.max 计算最小值和最大值 argmin.argmax 计算能够获取到 ...
- pandas汇总和计算描述统计
pandas 对象拥有一组常用的数学和统计方法. 他们大部分都属于简约和汇总统计, 用于从Series中提取单个值(如sum或mean) 或从DataFrame的行或列中提取一个Series.跟对应的 ...
随机推荐
- webpack介绍 安装 常用命令
Webpack是一款用户打包前端模块的工具,它将根据模块的依赖关系进行静态分析,然后将这些模块按照指定的规则生成对应的静态资源.主要是用来打包在浏览器端使用的javascript的.同时也能转换.捆绑 ...
- 使用hashlib进行文件校验
import hashlib import os path = r'D:\CentOS 64 位' def file_md5(path): """ 文件校验 :param ...
- TCP/IP协议 模型
OSI的来源 OSI(Open System Interconnect),即开放式系统互联. 一般都叫OSI参考模型,是ISO(国际标准化组织)组织在1985年研究的网络互连模型. ISO为了更好的 ...
- python框架之Flask(4)-上下文管理
知识储备 偏函数 作用 偏函数,帮助开发者自动传递参数. 使用 import functools def index(a1, a2): return a1 + a2 # 原来的调用方式 # ret = ...
- linux安装lamp/lamp/lanmp
wdcp安装lamp/lanp/lanmp 和宝塔(centOS)1. yum install -y wget //yum安装wegt2. wget http://dl.wdlinux.cn/fil ...
- std::function
参考资料 • cplusplus.com:http://www.cplusplus.com/reference/functional/function/ • cppreference.com:http ...
- hive 基础
Apache的顶级项目,(java) 2008年Facebook公司开源给Apache基金会 官网:http://hive.apache.org/ hive 将SQL转换成MapReduce程序,并将 ...
- vim代码格式化插件clang-format
title: vim代码格式化插件clang-format date: 2017-12-12 20:28:26 tags: vim categories: 开发工具 安装vim-clang-forma ...
- linux下sublime输入中文
title: linux下sublime输入中文 date: 2017-11-09 20:54:43 tags: sublime categories: 开发工具 archlinux系统 下载文件 g ...
- write RE validation
正则表达式,又称规则表达式.(英语:Regular Expression,在代码中常简写为regex.regexp或RE),计算机科学的一个概念.正则表达式通常被用来检索.替换那些符合某个模式(规则) ...