使用pandas的部分问题汇总
pandas(我所用版本0.17)是一个强大数据处理库,在开发金融类系统中我应用到了pandas.Dataframe数据类型,它的数据结构类似一张图表(如下图所示),左边一列为index既行的索引:
图1
下面主要介绍在开发中使用方法:
1,DataFrame将1分钟K线数据合成5分钟数据
pd_1m = pd.DataFrame() #已有1分钟K线数据
#合成新K线的前提是df的数据的index必须是时间
pd_1m = pd_1m.set_index('kline_time') #将时间戳设置为index
#设置df数据中每列的规则
ohlc_rule = {
'open': 'first',#open列:序列中第一个的值
'high': 'max',#high列:序列中最大的值
'low': 'min',#low列:序列中最小的值
'close': 'last',#close列:序列中最后一个的值
'volume': 'sum',#volume列:将所有序列里的volume值作和
'amount': 'sum'#amount列:将所有序列里的amount值作和
}
#合成5分钟K线并删除为空的行 参数 closed:left类似向上取值既 09:30的k线数据是包含09:30-09:35之间的数据
pd_5m = pd_1m.resample('5min', how=ohlc_rule, closed='left', label='left').dropna(axis=0, how='any')
#dropna(axis=0, how='any') axis参数0:针对行进行操作 1:针对列进行操作 how参数any:只要包含就删除 all:全是为NaN才删除
2,DataFrame的行遍历及过滤
import pandas as pd
import numpy as np dates = pd.date_range('2020-01-01',periods=6)
df = pd.DataFrame(np.random.rand(6,4),index=dates,columns=['a','b','c','d']) # iloc根据行号来取值
print(df.iloc[3]) # 第三行
print(df.iloc[1:4]) # 左闭右开
# loc根据行头来取值 此数据行头是日期
print(df.loc["2020-01"]) # 行头包含2020-01字符串的所有行
print(df.loc["2020-01-02": "2020-01-04",["b","c"]]) # 行头再这个范围内 可指定显示某几列
# 根据列来筛选
print(df["a"]) # 获取单列
print(df[["a","b"]]) # 获取多列
# 以下根据条件筛选也可用于loc函数中
print(df[df['a']>0]) # a列数据大于0的行筛选出来
print(df[~df['a'].isin([2,3,5])]) # ~表示不满足该条件的其他数据 isin表示在某个list中
print(df[(df['a'].isin([2, 3])) & (df['b'] != 0)]) # &与;|表示或 ;运算符:!=不等于 == > < 以此类推等等
# df行遍历
for index,row in enumerate(df.iterrows()):
# row既每行,包含行头及行数据
print(index,row[0],row[1])
3,pandas中转化数据及变更类型
import pandas as pd
import numpy as np # 整理,格式化数据
dates = pd.date_range('2020-01-01',periods=6)
df = pd.DataFrame(np.random.rand(6,4),index=dates,columns=['a','b','c','d'])
df["e"] = pd.Series([1,1,3,4,4,2],index=dates) # apply根据用户执行axis来计算得到新行/列数据 1=列 默认行0
f_col = df.apply(lambda k: k['a']*k['b'] if k['c'] >0.5 else k['a']*k['c'], axis=1) # map是Series的函数通过mapping来生成新的数据行/列 可以使用dict,也可函数
print(df["e"].map({1: 9}))
print(df["e"].map(lambda x: 0 if x > 3 else 1)) # applymap 处理全部的行业数据
def cal_custom(data):
return float("%.2f" % data)
print(df.applymap(cal_custom)) # 在统计分析中会用到变量类型装换 需要转为分类型变量
z = pd.Series([3,4,6,6,4])
z = z.astype("category") # 分类型变量(分类型变量本身可以是数字格式)
# 转换为数字类型
pd.to_numeric(z, errors='coerce') # ignore
# 指定分类型变量为指定顺序的有序分类型变量
print(z.cat.reorder_categories([4,6,3]))
# pandas中pandas.tslib.Timestamp的计算及转换
dtime = pandas.tslib.Timestamp()
dtime = dtime + np.timedelta64(8, 'h')#给时间加上8小时 np为numpy 参数 h 小时 m 分钟
dtime = dtime.strftime('%Y-%m-%d %H:%M:%S')#转换为字符格式
4,其他
print(df.cov()) # 协方差矩阵
print(df.corr()) # 相关系数矩阵
print(df.corrwith(df["a"])) # 某列与其他列的相关系数结果
print(df.groupby(["a","b"]).agg(['mean','std','count','max','sum'])) # std标准差
以上主要为开发问题中遇到的场景,有局限性,希望大家能用上~
使用pandas的部分问题汇总的更多相关文章
- pandas知识点脑图汇总
参考文献: [1]Pandas知识点脑图汇总
- pandas(三)汇总和计算描述统计
pandas对象有一些常用的数学和统计的方法,大部分都属于约简或汇总统计. SUM方法 DataFrame对象的sum方法,返回一个含有列小计的Series >>> df = Dat ...
- 用Python的pandas框架操作Excel文件中的数据教程
用Python的pandas框架操作Excel文件中的数据教程 本文的目的,是向您展示如何使用pandas 来执行一些常见的Excel任务.有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其 ...
- Python_科学计算平台__pypi体系的numpy、scipy、pandas、matplotlib库简介
1.numpy--基础,以矩阵为基础的数学计算模块,纯数学 存储和处理大型矩阵. 这个是很基础的扩展,其余的扩展都是以此为基础. 快速学习入口 https://docs.scipy.org/doc/n ...
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ...
- 【学习】数据处理基础知识(汇总和计算描述统计)【pandas】
pd对象拥有一组常用的数学和统计方法.大部分都属于约简和汇总统计,用于从Series中单个值,如sum 和 mean 或从DF的行或列中提取一个Series. 1. 描述和汇总统计方法 #汇总和计算描 ...
- Pandas基本功能之层次化索引及层次化汇总
层次化索引 层次化也就是在一个轴上拥有多个索引级别 Series的层次化索引 data=Series(np.random.randn(10),index=[ ['a','a','a','b','b', ...
- Pandas汇总和处理缺失数据
汇总的函数 方法 说明 count 非NA的值数量 describe 针对Series和DataFrame列计算汇总统计 min.max 计算最小值和最大值 argmin.argmax 计算能够获取到 ...
- pandas汇总和计算描述统计
pandas 对象拥有一组常用的数学和统计方法. 他们大部分都属于简约和汇总统计, 用于从Series中提取单个值(如sum或mean) 或从DataFrame的行或列中提取一个Series.跟对应的 ...
随机推荐
- 浅谈Java对象的equals方法
相等与同一: 如果两个对象具有相同的类型以及相同的属性值,则称这两个对象相等. 如果两个引用对象指的是同一个对象,则称这两个变量同一. ==是一个比较运算符,基本数据类型比较的是值,引用数据类型比较的 ...
- Linux 中的 Install命令
Linux 中的 Install命令 更新时间:2017年09月25日 16:51:45 投稿:mrr 我要评论 install命令的作用是安装或升级软件或备份数据,它的使用权限是所有用户. ...
- nodejs构建mock数据
Nodejs构建mock数据并通过rest api风格调用接口访问数据 如果我们只有json格式的数据文件,我们想通过访问url方式调用居然数据 确保电脑安装node环境 如果你没有安装好node环境 ...
- Python字符串拼接的6种方法(转)
add by zhj: 对于多行字符串连接,第6种连接方法很方便,连接时不会添加额外的空格. 原文:http://www.cnblogs.com/bigtreei/p/7892113.html 1. ...
- maven工程下添加oracle驱动包
maven工程手动安装oracle驱动包到本地仓库 下载ojdbc.jar包 这个当然是最好去官网下载了.http://mvnrepository.com这个仓库上有,具体页面地址为: http:// ...
- 深入浅出--UNIX多进程编程之fork()函数
0前言 上周都在看都在学习unix环境高级编程的第八章--进程控制.也就是这一章中.让我理解了unix中一些进程的原理.以下我就主要依照进程中最重要的三个函数来进行解说.让大家通过阅读这一篇文章彻底明 ...
- 官方Canvas API文档
https://developer.mozilla.org/zh-CN/docs/Web/API/Canvas_API
- python基础(5)-文件操作
文件(file)操作 创建文件 verse.txt: 床前明月光 疑是地上霜 open(path(文件路径),mode(模式:r/r+[读],w/w+[写],a/a+[追加])):返回文件句柄(对象) ...
- Cocos Creator 加载和切换场景(官方文档摘录)
Cocos Creator 加载和切换场景(官方文档摘录) 在 Cocos Creator 中,我们使用场景文件名( 可以不包含扩展名)来索引指代场景.并通过以下接口进行加载和切换操作: cc.dir ...
- Linux 命令整理 (有不正确的随时补充)
du 概述: Linux下命令,统计目录(或文件)所占磁盘空间的大小. 语法: du[-abcDhHklmsSx][-L<符号连接>][-X<文件>][--block-size ...