P1282 多米诺骨牌

题目描述

多米诺骨牌有上下2个方块组成,每个方块中有1~6个点。现有排成行的

上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|。例如在图8-1中,S1=6+1+1+1=9,S2=1+5+3+2=11,|S1-S2|=2。每个多米诺骨牌可以旋转180°,使得上下两个方块互换位置。 编程用最少的旋转次数使多米诺骨牌上下2行点数之差达到最小。

Solution

先明确题意:

每个物品有两个状态: 正着的和倒着的

求最小差值意义下的最小旋转次数

首先看这个差值最小, 发现下值 = 总值 - 上值, 于是我们统计一侧和即可计算差值

然后设计一下状态, 题目求最小旋转次数, 那么dp数组表示的应该是最小次数, 又有最小差值限制显然要引入一维一侧和作为状态

设计dp状态的关键是看 如下状态是否只对应一个最值

于是 \(dp[i][j]\) 表示考虑前 \(i\) 个, 上侧和为 \(j\) 的最小旋转次数

边界为 第一个不转 ---> \(dp[1][up[1]] = 0\)

转 ---> \(dp[1][down[1]] = 1\)

注意当 \(up[1] == down[1]\) 时不用旋转, 两个值都为 0

转移直接看转不转即可, 类似 01背包

注意 \(j\) 的状态最大有 \(6n\)

然后考虑优化的话可以让最大状态为 \(\sum_{i = 1}^{n}max(up_{i}, down_{i})\)

还可以滚动数组

懒就不写了

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(int i = (x);i <= (y);i++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 2019, inf = 1e9;
int num;
int a[maxn], b[maxn], sum;
int dp[maxn][maxn * 6];//表示前i个骨牌,上面和为j的最小交换数
void init(){
num = RD();
REP(i, 1, num)a[i] = RD(), b[i] = RD(), sum += a[i] + b[i];
REP(i, 1, num)REP(j, 1, num * 6)dp[i][j] = inf;
if(a[1] == b[1])dp[1][a[1]] = dp[1][b[1]] = 0;
else dp[1][a[1]] = 0, dp[1][b[1]] = 1;
}
void solve(){
REP(i, 1, num){
REP(j, 1, num * 6){//最多状态数
if(dp[i][j] == inf)continue;//防越界就打了个刷表法
dp[i + 1][j + a[i + 1]] = min(dp[i + 1][j + a[i + 1]], dp[i][j]);//不转
dp[i + 1][j + b[i + 1]] = min(dp[i + 1][j + b[i + 1]], dp[i][j] + 1);//转
}
}
int minS = inf, ans;
REP(i, 1, num * 6){
if(dp[num][i] == inf)continue;
int now = abs((sum - i) - i);
if(now < minS){
minS = now;
ans = dp[num][i];
}
else if(now == minS)ans = min(ans, dp[num][i]);
}
printf("%d\n", ans);
}
int main(){
init();
solve();
return 0;
}

P1282 多米诺骨牌的更多相关文章

  1. 洛谷P1282 多米诺骨牌 (DP)

    洛谷P1282 多米诺骨牌 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中 ...

  2. poj 1717==洛谷P1282 多米诺骨牌

    Dominoes Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6571   Accepted: 2178 Descript ...

  3. 洛谷P1282 多米诺骨牌

    P1282 多米诺骨牌 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S ...

  4. P1282 多米诺骨牌【dp】

    P1282 多米诺骨牌 提交 20.02k 通过 6.30k 时间限制 1.00s 内存限制 125.00MB 题目提供者洛谷 难度提高+/省选- 历史分数100 提交记录 查看题解 标签   查看算 ...

  5. 【01背包】洛谷P1282多米诺骨牌

    题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S1=6+1+1+1=9, ...

  6. P1282 多米诺骨牌 (背包变形问题)

    题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S1=6+1+1+1=9, ...

  7. P1282 多米诺骨牌 (差值DP+背包)

    题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S1=6+1+1+1=9, ...

  8. P1282 多米诺骨牌[可行性01背包]

    题目来源:洛谷 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中,S1=6+ ...

  9. ACM - 动态规划 - P1282 多米诺骨牌

    多米诺骨牌由上下 \(2\) 个方块组成,每个方块中有 \(1 \sim 6\) 个点.现有排成行的上方块中点数之和记为 \(S_1\),下方块中点数之和记为 \(S_2\),它们的差为 \(\lef ...

随机推荐

  1. Linux内核分析— —进程的切换和系统的一般执行过程

    进程调度的时机 linux进程调度是基于分时和优先级的 中断处理过程(包括时钟中断.I/O中断.系统调用和异常)中,直接调用schedule(),或者返回用户态时根据need_resched标记调用s ...

  2. 跟踪分析Linux内核的启动过程

    潘俊洋 原创作品转载请注明出处<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.准备 搭建环境 1 2 ...

  3. Linux实践二:模块

    一.基本模块的实现: 1.进程遍历打印输出 2.简单地编写一个新的系统调用(替换空的系统调用号) 基本模块学到的知识点: 1.相关指令 make oldconfig 配置内核 make 编译内核 ma ...

  4. 第七周linux内核分析

    可执行程序的装载 作者 黎静+ 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-100002900 ...

  5. docker安装后启动出现错误

    重启报错: [root@localhost ~]# systemctl restart docker Job for docker.service failed because the control ...

  6. [转帖]super-inspire

    quickStart/快速开始 访问临时服务器地址, 你可以在这里选择一个喜欢的系统, 然后系统将自动创建该系统的容器, 并自动打开新的网页进入 web shell 交互. 目前支持 Ubuntu14 ...

  7. Linux下安装oracle的过程

    1. Linux 安装 主要不要将home分区设置的特别大 2. 安装必须的一些包. yum install -y \ binutils.x86_64 \ elfutils-libelf-devel. ...

  8. leetcode:Reverse Integer 及Palindrome Number

    Reverse Integer Reverse digits of an integer. Example1: x = 123, return 321Example2: x = -123, retur ...

  9. 转《发布ionic应用到App Store的完整步骤 》

    当我们开发完一个应用,就到了发布到市场的时候,Android的打包比较简单,签名之后可以放在我们自己的服务器上,让用户扫描二维码来下载,而苹果的就比较麻烦了,如果内测可以通过蒲公英等内测分发平台,但是 ...

  10. 买了本Delphi面向对象编程思想,正在看,产生些问题。

    1:第33页说,Delphi通过调用类的一个构造函数来建立一个对象的实例,对象至少有一个create()的构造函数,使用时候写MyObject:=TmyObject.create即可.   但是第37 ...