任务:对图像进行边缘检测

思路:

  1. )将图像的灰度数值进行0-255的维度统计;
  2. )EM算法分析出几个核心显示区块的灰度;
  3. )使用通用的边界检测算法(具体哪一种待定)。

编辑于2017.12.24 15:45

EM算法的使用参考:

# -*- coding: utf-8 -*-
"""
Created on Tue Oct 24 18:40:00 2017 @author: nvidia
""" #EM Algorithm from numpy import *
import numpy as np
import random
import copy SIGMA = 6
EPS = 0.0001
#生成方差相同,均值不同的样本
def generate_data():
Miu1 = 20
Miu2 = 40
N = 1000
#N = 10000
X = mat(zeros((N,1)))
for i in range(N):
temp = random.uniform(0,1)
if(temp > 0.5):
X[i] = temp*SIGMA + Miu1
else:
X[i] = temp*SIGMA + Miu2
return X #EM算法 key
def my_EM(X):
k = 2
N = len(X)
Miu = np.random.rand(k,1)
print "This is the origenal key :\n",Miu
Posterior = mat(zeros((N,2)))
dominator = 0
numerator = 0
#先求后验概率
for iter in range(1000):
for i in range(N):
dominator = 0
for j in range(k):
dominator = dominator + np.exp(-1.0/(2.0*SIGMA**2) * (X[i] - Miu[j])**2)
#print dominator,-1/(2*SIGMA**2) * (X[i] - Miu[j])**2,2*SIGMA**2,(X[i] - Miu[j])**2
#return
for j in range(k):
numerator = np.exp(-1.0/(2.0*SIGMA**2) * (X[i] - Miu[j])**2)
Posterior[i,j] = numerator/dominator
oldMiu = copy.deepcopy(Miu)
#最大化
for j in range(k):
numerator = 0
dominator = 0
for i in range(N):
numerator = numerator + Posterior[i,j] * X[i]
dominator = dominator + Posterior[i,j]
Miu[j] = numerator/dominator
print Miu
#print (abs(Miu - oldMiu)).sum()
#print '\n'
if (abs(Miu - oldMiu)).sum() < EPS:
print Miu
print iter
print (abs(Miu - oldMiu)).sum()
break if __name__ == '__main__':
X = generate_data()
my_EM(X)

机器视觉编程作业02(00)EM算法的更多相关文章

  1. stanford coursera 机器学习编程作业 exercise4--使用BP算法训练神经网络以识别阿拉伯数字(0-9)

    在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(trai ...

  2. 机器学习-EM算法

    最大期望算法 EM算法的正式提出来自美国数学家Arthur Dempster.Nan Laird和Donald Rubin,其在1977年发表的研究对先前出现的作为特例的EM算法进行了总结并给出了标准 ...

  3. java数据结构和算法编程作业系列篇-数组

    /** * 编程作业 2.1 向highArray.java程序(清单2.3)的HighArray类添加一个名为getMax()的方法,它返回 数组中最大关键字的值,当数组为空时返回-1.向main( ...

  4. 编程作业1.1——sklearn机器学习算法系列之LinearRegression线性回归

    知识点 scikit-learn 对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析. 我们也可以使用scikit-learn的线性回归函数,而不是从头开始实现这些算法. 我们将scik ...

  5. Stanford coursera Andrew Ng 机器学习课程编程作业(Exercise 2)及总结

    Exercise 1:Linear Regression---实现一个线性回归 关于如何实现一个线性回归,请参考:http://www.cnblogs.com/hapjin/p/6079012.htm ...

  6. 11061160_11061151_Pair Project: Elevator Scheduler软件工程结对编程作业总结

    软件工程结对编程作业总结 11061160  顾泽鹏 11061151  庞梦劼 一.关于结对编程 这次的软工任务既不是单打独斗的个人任务,也不是集思广益的团队项目,而是人数为两人的结对编程.两个人合 ...

  7. 猪猪的机器学习笔记(十四)EM算法

    EM算法 作者:樱花猪   摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大 ...

  8. ufldl学习笔记和编程作业:Feature Extraction Using Convolution,Pooling(卷积和汇集特征提取)

    ufldl学习笔记与编程作业:Feature Extraction Using Convolution,Pooling(卷积和池化抽取特征) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰 ...

  9. ufldl学习笔记和编程作业:Softmax Regression(softmax回报)

    ufldl学习笔记与编程作业:Softmax Regression(softmax回归) ufldl出了新教程.感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量 ...

随机推荐

  1. 688. Knight Probability in Chessboard棋子留在棋盘上的概率

    [抄题]: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...

  2. 4412 uboot上手

    1,了解 print  查看UBOOT软件的环境变量       (变量名=变量) setenv.saveenv   setenv abc 100 200   设置 添加一个变量值 修改一个已有的变量 ...

  3. java【基础】日期操作

    主要是date类,SimpleDateFormat类以及Calendar类的使用. date表示日期,simpleDateFormat 表示日期格式化,Calendar一般用来做时间的操作,比如加减天 ...

  4. java 多线程通知 CountDownLatch 倒数计数器的使用

    package com.hra.riskprice; import com.hra.riskprice.SysEnum.Factor_Type; import org.springframework. ...

  5. 词向量之word2vec实践

    首先感谢无私分享的各位大神,文中很多内容多有借鉴之处.本次将自己的实验过程记录,希望能帮助有需要的同学. 一.从下载数据开始 现在的中文语料库不是特别丰富,我在之前的文章中略有整理,有兴趣的可以看看. ...

  6. Zookeeper Client基础操作和Java调用

    ## Zookeeper > Zookeeper目前用来做数据同步,再各个服务之前同步关键信息 i.客户端操作 1. 创建 create [-s] [-e] path data acl -s 为 ...

  7. 《Linux就该这么学》第三天课程

    秦时明月经典语录: 王道: 千里挥戈,万众俯首.四海江湖,百世王道.——项羽 今天主要介绍了常用系统工作的命令 如需进一步了解,请前往https://www.linuxcool.com(附带配音) r ...

  8. CentOS7:ifconfig command not found解决

    https://blog.csdn.net/dandelion_drq/article/details/53503487

  9. 源码管理工具Git-客户端GitBash常用命令

    1.配置用户名和邮箱地址(第一次启动程序时配置,以后使用不用配置)git config --global user.name "dolen"git config --global ...

  10. 利用foo函数的Bof漏洞攻击:构造攻击字符串

    利用foo函数的Bof漏洞攻击:构造攻击字符串 一.基础知识储备 objdump反汇编指令.gdb函数调试运行.Perl语言.|管道符 二.实验步骤 1. 通过反汇编了解程序功能及代码 ①反汇编查看文 ...