TensorFlow高效读取数据的方法

TF Boys (TensorFlow Boys ) 养成记(二): TensorFlow 数据读取

Tensorflow从文件读取数据

极客学院-数据读取

十图详解TensorFlow数据读取机制(附代码)

http://geek.csdn.net/news/detail/201552

在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解。确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料。今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下TensorFlow的数据读取机制,文章的最后还会给出实战代码以供参考。

TensorFlow读取机制图解

首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示:

假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……我们只需要把它们读取到内存中,然后提供给GPU或是CPU进行计算就可以了。这听起来很容易,但事实远没有那么简单。事实上,我们必须要把数据先读入后才能进行计算,假设读入用时0.1s,计算用时0.9s,那么就意味着每过1s,GPU都会有0.1s无事可做,这就大大降低了运算的效率。

如何解决这个问题?方法就是将读入数据和计算分别放在两个线程中,将数据读入内存的一个队列,如下图所示:

读取线程源源不断地将文件系统中的图片读入到一个内存的队列中,而负责计算的是另一个线程,计算需要数据时,直接从内存队列中取就可以了。这样就可以解决GPU因为IO而空闲的问题!

而在TensorFlow中,为了方便管理,在内存队列前又添加了一层所谓的“文件名队列”。

为什么要添加这一层文件名队列?我们首先得了解机器学习中的一个概念:epoch。对于一个数据集来讲,运行一个epoch就是将这个数据集中的图片全部计算一遍。如一个数据集中有三张图片A.jpg、B.jpg、C.jpg,那么跑一个epoch就是指对A、B、C三张图片都计算了一遍。两个epoch就是指先对A、B、C各计算一遍,然后再全部计算一遍,也就是说每张图片都计算了两遍。

TensorFlow使用文件名队列+内存队列双队列的形式读入文件,可以很好地管理epoch。下面我们用图片的形式来说明这个机制的运行方式。如下图,还是以数据集A.jpg, B.jpg, C.jpg为例,假定我们要跑一个epoch,那么我们就在文件名队列中把A、B、C各放入一次,并在之后标注队列结束。

程序运行后,内存队列首先读入A(此时A从文件名队列中出队):

再依次读入B和C:

此时,如果再尝试读入,系统由于检测到了“结束”,就会自动抛出一个异常(OutOfRange)。外部捕捉到这个异常后就可以结束程序了。这就是TensorFlow中读取数据的基本机制。如果我们要跑2个epoch而不是1个epoch,那只要在文件名队列中将A、B、C依次放入两次再标记结束就可以了。

TensorFlow读取数据机制的对应函数

如何在TensorFlow中创建上述的两个队列呢?

对于文件名队列,我们使用tf.train.string_input_producer函数。这个函数需要传入一个文件名list,系统会自动将它转为一个文件名队列。

此外tf.train.string_input_producer还有两个重要的参数,一个是num_epochs,它就是我们上文中提到的epoch数。另外一个就是shuffle,shuffle是指在一个epoch内文件的顺序是否被打乱。若设置shuffle=False,如下图,每个epoch内,数据还是按照A、B、C的顺序进入文件名队列,这个顺序不会改变:

如果设置shuffle=True,那么在一个epoch内,数据的前后顺序就会被打乱,如下图所示:

在TensorFlow中,内存队列不需要我们自己建立,我们只需要使用reader对象从文件名队列中读取数据就可以了,具体实现可以参考下面的实战代码。

除了tf.train.string_input_producer外,我们还要额外介绍一个函数:tf.train.start_queue_runners。初学者会经常在代码中看到这个函数,但往往很难理解它的用处,在这里,有了上面的铺垫后,我们就可以解释这个函数的作用了。

在我们使用tf.train.string_input_producer创建文件名队列后,整个系统其实还是处于“停滞状态”的,也就是说,我们文件名并没有真正被加入到队列中(如下图所示)。此时如果我们开始计算,因为内存队列中什么也没有,计算单元就会一直等待,导致整个系统被阻塞。

而使用tf.train.start_queue_runners之后,才会启动填充队列的线程,这时系统就不再“停滞”。此后计算单元就可以拿到数据并进行计算,整个程序也就跑起来了,这就是函数tf.train.start_queue_runners的用处。

实战代码

我们用一个具体的例子感受TensorFlow中的数据读取。如图,假设我们在当前文件夹中已经有A.jpg、B.jpg、C.jpg三张图片,我们希望读取这三张图片5个epoch并且把读取的结果重新存到read文件夹中。

对应的代码如下:

# 导入TensorFlow
import TensorFlow as tf # 新建一个Session
with tf.Session() as sess:
# 我们要读三幅图片A.jpg, B.jpg, C.jpg
filename = ['A.jpg', 'B.jpg', 'C.jpg']
# string_input_producer会产生一个文件名队列
filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)
# reader从文件名队列中读数据。对应的方法是reader.read
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
# tf.train.string_input_producer定义了一个epoch变量,要对它进行初始化
tf.local_variables_initializer().run()
# 使用start_queue_runners之后,才会开始填充队列
threads = tf.train.start_queue_runners(sess=sess)
i = 0
while True:
i += 1
# 获取图片数据并保存
image_data = sess.run(value)
with open('read/test_%d.jpg' % i, 'wb') as f:
f.write(image_data)

我们这里使用filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)建立了一个会跑5个epoch的文件名队列。并使用reader读取,reader每次读取一张图片并保存。

运行代码后,我们得到就可以看到read文件夹中的图片,正好是按顺序的5个epoch:

如果我们设置filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5)中的shuffle=True,那么在每个epoch内图像就会被打乱,如图所示:

我们这里只是用三张图片举例,实际应用中一个数据集肯定不止3张图片,不过涉及到的原理都是共通的。

总结

这篇文章主要用图解的方式详细介绍了TensorFlow读取数据的机制,最后还给出了对应的实战代码,希望能够给大家学习TensorFlow带来一些实质性的帮助。

TensorFlow数据读取的更多相关文章

  1. 十图详解tensorflow数据读取机制(附代码)转知乎

    十图详解tensorflow数据读取机制(附代码) - 何之源的文章 - 知乎 https://zhuanlan.zhihu.com/p/27238630

  2. TensorFlow数据读取方式:Dataset API

    英文详细版参考:https://www.cnblogs.com/jins-note/p/10243716.html Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服 ...

  3. 详解Tensorflow数据读取有三种方式(next_batch)

    转自:https://blog.csdn.net/lujiandong1/article/details/53376802 Tensorflow数据读取有三种方式: Preloaded data: 预 ...

  4. tensorflow 1.0 学习:十图详解tensorflow数据读取机制

    本文转自:https://zhuanlan.zhihu.com/p/27238630 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找 ...

  5. 十图详解tensorflow数据读取机制

    在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下 ...

  6. TF Boys (TensorFlow Boys ) 养成记(二): TensorFlow 数据读取

    TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Vis ...

  7. 十图详解TensorFlow数据读取机制(附代码)

    在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下 ...

  8. Tensorflow数据读取机制

    展示如何将数据输入到计算图中 Dataset可以看作是相同类型"元素"的有序列表,在实际使用时,单个元素可以是向量.字符串.图片甚至是tuple或dict. 数据集对象实例化: d ...

  9. 【转载】 十图详解tensorflow数据读取机制(附代码)

    原文地址: https://zhuanlan.zhihu.com/p/27238630 何之源 ​ 深度学习(Deep Learning) 话题的优秀回答者       --------------- ...

随机推荐

  1. DokuWiki 插件使用

    本身DokuWiki提供了一些公共,但是不是很强大,所以可以安装一些插件. 安装方法可以参考:https://www.dokuwiki.org/extensions 下面列举出我觉得好用的一些插件: ...

  2. centos7.6+samba+设置可读可写不可删权限

    samba原文 https://www.cnblogs.com/muscleape/p/6385583.html 设置可读可写不可删权限原文: https://blog.51cto.com/guanh ...

  3. startup.bat 一闪而过解决方案

    原文地址:http://blog.csdn.net/stypace/article/details/38083581 启动tomcat时cmd窗口一闪而过解决方法. 注: 我这边只是配置了环境变量就o ...

  4. POJ1569 Myacm Triangles

    Description There has been considerable archeological work on the ancient Myacm culture. Many artifa ...

  5. django 补充和中间件

    配置 from django.conf import settings form组件 from django.forms import Formfrom django.forms import fie ...

  6. 使用Go编写WebAssembly

    I. Install go 1. down https://golang.org/dl/ go1.12.3.windows-amd64.zip 2. set path (1) GOROOTvar na ...

  7. Vue 封装的noData组件

    <template> <div :style="{color: fontColor}" :class="['noDataView', iconType] ...

  8. Flask与WSGI

    刚开始接触到python及Flask框架时,总是会听到 wsgi等等相关的名词,以及 项目部署时会用到nginx+gunicorn等等,但是对于一个请求从 nignx到gunicorn再到falsk框 ...

  9. Oracle表中的主键被当成哪些表的外键

    SELECT B.TABLE_NAME FROM USER_CONSTRAINTS A INNER JOIN USER_CONS_COLUMNS B ON A.CONSTRAINT_NAME = B. ...

  10. 最近面试 Java 后端的感受!

    来源:cnblogs.com/JavaArchitect/p/10011253.html 上周,密集面试了若干位Java后端候选人,工作经验在3到5年间.我的标准其实不复杂: 第一能干活,第二Java ...