Problem

每个软件都要安装某些软件才能安装,而且都有体积和价值,求安装的价值最大值

Solution

对于每个环,我们可以知道必须全部一起取或者不取,因此我们先用Tarjan缩点

然后我们用一个树形DP就可以解决了

Notice

注意这颗树是如果一个节点没取,后面就都不能取了

Code

#include<cmath>
#include<stack>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
#define travel2(i, u) for (reg i = head2[u]; i; i = edge2[i].next)
const int INF = 1e9;
const double eps = 1e-6, phi = acos(-1);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
int f[105][1005];
int Time = 0, num1 = 0, num2 = 0, scc = 0, n, m;
stack<int> Stack;
struct node
{
int vet, next;
}edge[505], edge2[505];
int head[105], head2[105], dfn[105], low[105], in[105], belong[105], v[105], w[105], V[105], W[105], flag[105];
void addedge(int u, int v)
{
edge[++num1].vet = v;
edge[num1].next = head[u];
head[u] = num1;
}
void add(int u, int v)
{
in[v]++;
edge2[++num2].vet = v;
edge2[num2].next = head2[u];
head2[u] = num2;
}
void Tarjan(int u)
{
dfn[u] = low[u] = ++Time;
Stack.push(u);
flag[u] = 1;
travel(i, u)
{
int v = edge[i].vet;
if (!dfn[v])
{
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if (flag[v]) low[u] = min(low[u], dfn[v]);
}
if (low[u] == dfn[u])
{
int t; scc++;
do
{
t = Stack.top();
Stack.pop();
belong[t] = scc;
flag[t] = 0;
V[scc] += v[t];
W[scc] += w[t];
}while (t != u);
}
}
void dp(int u)
{
travel2(i, u)
{
int v = edge2[i].vet;
dp(v);
per(j, m - V[u], 0)
rep(k, 0, j) f[u][j] = max(f[u][j], f[u][k] + f[v][j - k]);
}
per(j, m, V[u]) f[u][j] = f[u][j - V[u]] + W[u];
per(j, V[u] - 1, 0) f[u][j] = 0;
}
int sqz()
{
n = read(), m = read();
rep(i, 1, n) v[i] = read();
rep(i, 1, n) w[i] = read();
rep(i, 1, n) addedge(read(), i);
rep(i, 0, n)
if (!dfn[i]) Tarjan(i);
rep(u, 1, n)
travel(i, u)
{
int v = edge[i].vet;
if (belong[u] != belong[v]) add(belong[u], belong[v]);
}
rep(i, 1, scc) if (!in[i]) add(0, i);
dp(0);
printf("%d\n", f[0][m]);
return 0;
}

[BZOJ2427]软件安装的更多相关文章

  1. bzoj2427 软件安装! 树dp

    软件安装 内存限制:128 MiB 时间限制:1000 ms 标准输入输出     题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一 些软 ...

  2. 【BZOJ2427】[HAOI2010]软件安装(动态规划,Tarjan)

    [BZOJ2427][HAOI2010]软件安装(动态规划,Tarjan) 题面 BZOJ 洛谷 题解 看到这类题目就应该要意识到依赖关系显然是可以成环的. 注意到这样一个性质,依赖关系最多只有一个, ...

  3. 【BZOJ2427】[HAOI2010]软件安装 Tarjan+树形背包

    [BZOJ2427][HAOI2010]软件安装 Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为 ...

  4. 【BZOJ-2427】软件安装 Tarjan + 树形01背包

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 960  Solved: 380[Submit][Status ...

  5. bzoj2427: [HAOI2010]软件安装

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  6. 【BZOJ2427】【HAOI2010】软件安装

    无力吐槽…… 原题: 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最 ...

  7. [BZOJ2427][HAOI2010]软件安装(Tarjan+DP)

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1987  Solved: 791[Submit][Statu ...

  8. BZOJ2427:[HAOI2010]软件安装(树形DP,强连通分量)

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  9. BZOJ2427:[HAOI2010]软件安装——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2427 https://www.luogu.org/problemnew/show/P2515 现在 ...

随机推荐

  1. React 添加对 Less 的支持, 使用 create-react-app 脚手架

    ---恢复内容开始--- 参考博客与我自己的当前版本有一点出入, 所以就将 参考博客写到文章后面去了. 我的电脑:  系统: Ubuntu16.04, 1, 安装脚手架: create-react-a ...

  2. pytorch torchvision对图像进行变换

    class torchvision.transforms.Compose(转换) 多个将transform组合起来使用. class torchvision.transforms.CenterCrop ...

  3. linux----------安装Supervisor是用Python开发的一套通用的进程管理程序

    1.linux环境必须安装 python 2.yum install python-setuptools 3.获取supervisor包 wget https://pypi.python.org/pa ...

  4. proto 3 语法

    一.简介 proto3是新版本的protobuf语法.它简化了部分语法,并扩大了支持的语言,Ruby.C#.目前谷歌推荐只在是用新支持的语言或使用新的gRPC框架的时候使用.proto2和proto3 ...

  5. spring boot + vue + element-ui全栈开发入门——主页面开发

    目的 开发一个后台管理的前端,顶部是标题,左侧是菜单导航栏,中间是要显示的内容.而内容可以是各种图表,也可以是数据列表. 一.准备工作 1..修改App.vue文件 代码如下: <templat ...

  6. 一定要知道的,那些Linux操作命令

    一定要知道的,那些Linux基本操作命令(一) 目录 1.文件和目录操作命令 2.用户和用户组操作命令 3.vim编辑器操作命令 4.打包和解压操作命令 5.系统操作命令 为什么要学习linux? 1 ...

  7. 表单、框架结构的大概、CSS开头(选择器以及常用属性)

    <!--为网页添加图标,写在头部--> <link rel="shortcut icon" href="favicon.ico(路径)" ty ...

  8. Python 类的特性讲解

    类的特性讲解 类的特性 #定义一个类, class是定义类的语法,Role是类名, (object)是新式类的写法,必须这样 写,以后再讲为什么 class Role(object): #初始化函数, ...

  9. 解决使用eclipse创建maven web项目时报Could not resolve archetype的问题

    前两天重装了系统,今天想写一个项目的时候出现了点问题. 在使用eclipse创建maven web项目时,点Finish后报了Could not resolve archetype的问题. Could ...

  10. python scrapy baidu image【转】

    原 https://github.com/vivianLL/baidupictures #!/usr/bin/env Python # coding=utf-8 #__author__ = 'leil ...