一.Callable与Runnable

先说一下java.lang.Runnable吧,它是一个接口,在它里面只声明了一个run()方法:
public interface Runnable {
public abstract void run();
}
由于run()方法返回值为void类型,所以在执行完任务之后无法返回任何结果。 Callable位于java.util.concurrent包下,它也是一个接口,在它里面也只声明了一个方法,只不过这个方法叫做call():
public interface Callable<V> {
/**
* Computes a result, or throws an exception if unable to do so.
*
* @return computed result
* @throws Exception if unable to compute a result
*/
V call() throws Exception;
}
可以看到,这是一个泛型接口,call()函数返回的类型就是传递进来的V类型。

那么怎么使用Callable呢?一般情况下是配合ExecutorService来使用的,在ExecutorService接口中声明了若干个submit方法的重载版本:

<T> Future<T> submit(Callable<T> task);
<T> Future<T> submit(Runnable task, T result);
Future<?> submit(Runnable task);

第一个submit方法里面的参数类型就是Callable。

暂时只需要知道Callable一般是和ExecutorService配合来使用的,具体的使用方法讲在后面讲述。

一般情况下我们使用第一个submit方法和第三个submit方法,第二个submit方法很少使用。

二.Future

Future就是对于具体的Runnable或者Callable任务的执行结果进行取消、查询是否完成、获取结果。必要时可以通过get方法获取执行结果,该方法会阻塞直到任务返回结果。

Future类位于java.util.concurrent包下,它是一个接口:
public interface Future<V> {
boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();
boolean isDone();
V get() throws InterruptedException, ExecutionException;
V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
} 在Future接口中声明了5个方法,下面依次解释每个方法的作用: ①cancel方法用来取消任务,如果取消任务成功则返回true,如果取消任务失败则返回false。参数mayInterruptIfRunning表示是否允许取消正在执行却没有执行完毕的任务,如果设置true,则表示可以取消正在执行过程中的任务。如果任务已经完成,则无论mayInterruptIfRunning为true还是false,此方法肯定返回false,即如果取消已经完成的任务会返回false;如果任务正在执行,若mayInterruptIfRunning设置为true,则返回true,若mayInterruptIfRunning设置为false,则返回false;如果任务还没有执行,则无论mayInterruptIfRunning为true还是false,肯定返回true。
②isCancelled方法表示任务是否被取消成功,如果在任务正常完成前被取消成功,则返回 true。
③isDone方法表示任务是否已经完成,若任务完成,则返回true;
④get()方法用来获取执行结果,这个方法会产生阻塞,会一直等到任务执行完毕才返回;
⑤get(long timeout, TimeUnit unit)用来获取执行结果,如果在指定时间内,还没获取到结果,就直接返回null。

也就是说Future提供了三种功能:

1)判断任务是否完成;

2)能够中断任务;

3)能够获取任务执行结果。

因为Future只是一个接口,所以是无法直接用来创建对象使用的,因此就有了下面的FutureTask。

三.FutureTask

我们先来看一下FutureTask的实现:

public class FutureTask<V> implements RunnableFuture<V>

FutureTask类实现了RunnableFuture接口,我们看一下RunnableFuture接口的实现:

public interface RunnableFuture<V> extends Runnable, Future<V> {
void run();
}

可以看出RunnableFuture继承了Runnable接口和Future接口,而FutureTask实现了RunnableFuture接口。所以它既可以作为Runnable被线程执行,又可以作为Future得到Callable的返回值。

FutureTask提供了2个构造器:

public FutureTask(Callable<V> callable) {
}
public FutureTask(Runnable runnable, V result) {
}

事实上,FutureTask是Future接口的一个唯一实现类。

四.使用示例

1.使用Callable+Future获取执行结果

ublic class Test {
public static void main(String[] args) {
ExecutorService executor = Executors.newCachedThreadPool();
Task task = new Task();
Future<Integer> result = executor.submit(task);
executor.shutdown(); try {
Thread.sleep();
} catch (InterruptedException e1) {
e1.printStackTrace();
} System.out.println("主线程在执行任务"); try {
System.out.println("task运行结果"+result.get());
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
} System.out.println("所有任务执行完毕");
}
}
class Task implements Callable<Integer>{
@Override
public Integer call() throws Exception {
System.out.println("子线程在进行计算");
Thread.sleep();
int sum = ;
for(int i=;i<;i++)
sum += i;
return sum;
}
} 执行结果: 子线程在进行计算
主线程在执行任务
task运行结果4950
所有任务执行完毕

2.使用Callable+FutureTask获取执行结果

public class Test {
public static void main(String[] args) {
//第一种方式
ExecutorService executor = Executors.newCachedThreadPool();
Task task = new Task();
FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
executor.submit(futureTask);
executor.shutdown(); //第二种方式,注意这种方式和第一种方式效果是类似的,只不过一个使用的是ExecutorService,一个使用的是Thread
/*Task task = new Task();
FutureTask<Integer> futureTask = new FutureTask<Integer>(task);
Thread thread = new Thread(futureTask);
thread.start();*/ try {
Thread.sleep();
} catch (InterruptedException e1) {
e1.printStackTrace();
} System.out.println("主线程在执行任务"); try {
System.out.println("task运行结果"+futureTask.get());
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
} System.out.println("所有任务执行完毕");
}
}
class Task implements Callable<Integer>{
@Override
public Integer call() throws Exception {
System.out.println("子线程在进行计算");
Thread.sleep();
int sum = ;
for(int i=;i<;i++)
sum += i;
return sum;
}
}

如果为了可取消性而使用 Future 但又不提供可用的结果,则可以声明 Future<?> 形式类型、并返回 null 作为底层任务的结果。

Java并发编程(十二)Callable、Future和FutureTask的更多相关文章

  1. Java并发编程:ThreadPoolExecutor + Callable + Future(FutureTask) 探知线程的执行状况

    如题 (总结要点) 使用ThreadPoolExecutor来创建线程,使用Callable + Future 来执行并探知线程执行情况: V get (long timeout, TimeUnit ...

  2. java并发编程-Executor框架 + Callable + Future

    from: https://www.cnblogs.com/shipengzhi/articles/2067154.html import java.util.concurrent.*; public ...

  3. [Java并发编程(二)] 线程池 FixedThreadPool、CachedThreadPool、ForkJoinPool?为后台任务选择合适的 Java executors

    [Java并发编程(二)] 线程池 FixedThreadPool.CachedThreadPool.ForkJoinPool?为后台任务选择合适的 Java executors ... 摘要 Jav ...

  4. Java并发编程(二)如何保证线程同时/交替执行

    第一篇文章中,我用如何保证线程顺序执行的例子作为Java并发系列的开胃菜.本篇我们依然不会有源码分析,而是用另外两个多线程的例子来引出Java.util.concurrent中的几个并发工具的用法. ...

  5. Java并发编程系列一:Future和CompletableFuture解析与使用

    一.Future模式 Java 1.5开始,提供了Callable和Future,通过它们可以在任务执行完毕之后得到任务执行结果. Future接口可以构建异步应用,是多线程开发中常见的设计模式. 当 ...

  6. Java并发(十二):CAS Unsafe Atomic

    一.Unsafe Java无法直接访问底层操作系统,而是通过本地(native)方法来访问.不过尽管如此,JVM还是开了一个后门,JDK中有一个类Unsafe,它提供了硬件级别的原子操作. 这个类尽管 ...

  7. java并发编程(二十五)----(JUC集合)LinkedBlockingDeque和ConcurrentLinkedDeque介绍

    Queue除了前面介绍的实现外,还有一种双向的Queue实现Deque.这种队列允许在队列头和尾部进行入队出队操作,因此在功能上比Queue显然要更复杂. LinkedBlockingDeque 我们 ...

  8. java并发编程(二十六)----ThreadLocal的使用

    其实ThreadLocal很多接触过多线程的同学都可能会很陌生,他不像current包里面那些耳熟能详的api一样在我们面前经常出现,更多的他作为一个本地类出现在系统设计里面.我们可以说一下Sprin ...

  9. java并发编程(二十二)----(JUC集合)ConcurrentHashMap介绍

    这一节我们来看一下并发的Map,ConcurrentHashMap和ConcurrentSkipListMap.ConcurrentHashMap通常只被看做并发效率更高的Map,用来替换其他线程安全 ...

  10. java并发编程(二十)----(JUC集合)CopyOnWriteArrayList介绍

    这一节开始我们正式来介绍JUC集合类.我们按照List.Set.Map.Queue的顺序来进行介绍.这一节我们来看一下CopyOnWriteArrayList. CopyOnWriteArrayLis ...

随机推荐

  1. Swift5 语言指南(十) 枚举

    一个枚举定义了一个通用型的一组相关的值,使你在你的代码中的一个类型安全的方式这些值来工作. 如果您熟悉C,您将知道C枚举将相关名称分配给一组整数值.Swift中的枚举更灵活,并且不必为枚举的每个案例提 ...

  2. 机器学习(Machine Learning)算法总结-决策树

    一.机器学习基本概念总结 分类(classification):目标标记为类别型的数据(离散型数据)回归(regression):目标标记为连续型数据 有监督学习(supervised learnin ...

  3. IDEA里五种目录类型简介(Mark Directory as)

    通过File  -> Settings-project Structure-Modules 或者右键Mark Directory as可以找到这五种类型. Sources 一般用于标注类似 sr ...

  4. DefaultServlet

    在web访问任何资源都是在访问Servlet 当你启动Tomcat,你在网址上输入http://localhost:8080.为什么会出现Tomcat小猫的页面? 这是由缺省Servlet为你服务的! ...

  5. Java开发技术大揭底——让你认知自己技术上的缺陷,成为架构师

    一.分布式架构体系 分布式怎么来的.传统的电信.银行业,当业务量大了之后,普通服务器CPU/IO/网络到了100%,请求太慢怎么办?最直接的做法,升级硬件,反正也不缺钱,IBM小型机,大型机,采购了堆 ...

  6. php几种常见排序算法

    <?php //从时间上来看,快速排序和归并排序在时间上比较有优势,//但是也比不上sort排序,归并排序比较占用内存! $arr = [4,6,1,2,3,89,56,34,56,23,65] ...

  7. 微信小程序treeview

    这是昨晚加班的时候,用微信小程序写的一个treeview组件. 先来看看效果图吧! 比较简单吧,直接view布局. 移动端实现treeview类似的效果,有大的局限性.首先受设备宽度的影响,如果像PC ...

  8. .Net RPC框架Thrift的用法

      关于Thrift 下面是来自百度百科关于Thrift的介绍: thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发.它结合了功能强大的软件堆栈和引擎,以构建在 C++, Java, Go ...

  9. Android生成二维码--拍照或从相册选取图片

    拍照或从相册选择图片是我们日常开发中经常使用到的,可以说是必须掌握的东西.上一篇我介绍了如何生成自定义二维码<Android生成自定义二维码>,其中logo和代替黑色色块的图片都是写死的, ...

  10. antd tree组件文件名换行 + 点击展开时,自动收起同级其他展开目录

    1.在项目中用 antd的tree组件的时候,遇到两个问题 1.文件名太长的话 会超出容器 很难看,解决方法如下 ` 引入css在global下设置 :global { .ant-tree li .a ...