非常经典的区间dp模板

对于每一个大于二的区间 我们显然都可以将它拆分成两个子序列 那么分别计算对于每个取最优值即可

#pragma GCC optimize("O2")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<limits.h>
#include<ctime>
#define N 100001
typedef long long ll;
const int inf=0x3fffffff;
const int maxn=2017;
using namespace std;
inline int read()
{
int f=1,x=0;char ch=getchar();
while(ch>'9'|ch<'0')
{
if(ch=='-')
f=-1;
ch=getchar();
}
while(ch<='9'&&ch>='0')
{
x=(x<<3)+(x<<1)+ch-'0';
ch=getchar();
}
return f*x;
}
int dp[maxn][maxn],a[N],sum[N];
int main()
{
int n=read();
for(int i=1;i<=n;i++)
{
a[i]=read();
sum[i]=sum[i-1]+a[i];
}
for(int len=1;len<=n;len++)
{
for(int l=1,r;(r=l+len)<=n;l++)
{
dp[l][r]=inf;
for(int k=l;k<r;k++)
dp[l][r]=min(dp[l][r],dp[l][k]+dp[k+1][r]+sum[r]-sum[l-1]);
}
}
cout<<dp[1][n];
}

另外强烈安利这篇讲区间dp的  全网最棒!强推一波!

顺便我居然才开始学区间dp(我太弱啦!

区间dp板子题:[noi1995]石子合并的更多相关文章

  1. 【区间dp】- P1880 [NOI1995] 石子合并

    记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...

  2. 区间DP初探 P1880 [NOI1995]石子合并

    https://www.luogu.org/problemnew/show/P1880 区间dp,顾名思义,是以区间为阶段的一种线性dp的拓展 状态常定义为$f[i][j]$,表示区间[i,j]的某种 ...

  3. tyvj 1055 沙子合并 区间dp经典模型,石子合并

    P1055 沙子合并 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述     设有N堆沙子排成一排,其编号为1,2,3,…,N(N<=300).每堆沙子 ...

  4. HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结

    题意:给定一个字符串 输出回文子序列的个数    一个字符也算一个回文 很明显的区间dp  就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...

  5. 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链

    区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...

  6. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  7. P1880 [NOI1995]石子合并 区间dp

    P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...

  8. [洛谷P1880][NOI1995]石子合并

    区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...

  9. 洛谷 P1880 [NOI1995]石子合并 题解

    P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...

随机推荐

  1. 插件使用一进度条---nprogress

    nprogress 是像youtube一样在顶部出现进度条,用在一些加载比较缓慢的场景中. 官方网站是 http://ricostacruz.com/nprogress/ 源码在 https://gi ...

  2. 51Nod 1264 线段相交(计算几何)

    1264 线段相交  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出平面上两条线段的两个端点,判断这两条线段是否相交(有一个公共点或有部分重合认为相 ...

  3. sqoop无法导出parquet文件到mysql

    1.问题描述 在CDH集群中我们需要将Hive表的数据导入到RDBMS数据库中,使用Sqoop工具可以方便的将Hive表数据抽取到RDBMS数据库中,在使用Sqoop抽取Hive Parquet表时作 ...

  4. ubuntu 出错 /etc/sudoers is world writable

    如果改变了这个,目录的权限sodu就不能用了,当你再使用sodu命令就会爆如下问题: sudo: /etc/sudoers is world writablesudo: no valid sudoer ...

  5. python基础知识之zip

    names =['zhangning','lsl','lyq','xww']age = [1,2,3,4]for a,b in zip(names,age): print(a,b)S = 'abcde ...

  6. settings.py常见配置项

    settings.py常见配置项 1. 配置Django_Admin依照中文界面显示 LANGUAGE_CODE = 'zh-hans' 2. 数据库配置(默认使用sqlite3) 1 .默认使用的s ...

  7. 实战--使用lvs实现四层负载均衡,转发到后端nginx

    这个帖子讲得很细致,基本依照这个方案实践. 只是IP是按我自己虚拟机的IP来测试的. http://www.cnblogs.com/arjenlee/p/9262737.html ========== ...

  8. Kudu-压缩

    随着时间的推移,tablet会积累许多DiskRowSets,并且会在行更新时累积很多增量重做(REDO)文件.当插入一个关键字时,为了强制执行主关键字唯一性,Kudu会针对RowSets查询一组布隆 ...

  9. Android ADB命令 adb devices 出现error:protocol fault (no status)

    问题背景:安装apk是报error:protocol fault<no status>或error:device not found手机驱动有问题 出现的问题如下:adb devices ...

  10. 【转】科大校长给数学系学弟学妹的忠告&本科数学参考书

    1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课 ...