BZOJ2512 : Groc
最优解一定是将起点、终点以及所有必经点连接成一棵树,对于每条树边恰好走两次,而从起点到终点的一条路径只走一次。
考虑连通性DP,设$f[i][j][k][x]$表示考虑完前$i$个走道,第$i$个走道底部和上部是否存在于树中,底部和上部是否和起点连通,走一次的路径端点是底部还是上部时的最小代价。
时间复杂度$O(NA^2)$。
#include<cstdio>
const int N=360,inf=100000000;
int m,n,A,B,i,j,k,x,a,b,nj,nk,nx,w,v[N][30],f[N][4][4][2],ans;
inline void up(int&a,int b){a>b?(a=b):0;}
inline int sum(int x,int l,int r){
int t=v[x][r];
if(l)t-=v[x][l-1];
return t;
}
int main(){
scanf("%d%d%d%d",&m,&n,&A,&B);A++;
while(m--)scanf("%d%d",&i,&j),v[i][j]=1;
for(i=0;i<=n;i++)for(j=0;j<4;j++)for(k=0;k<4;k++)for(x=0;x<2;x++)f[i][j][k][x]=inf;
f[0][1][1][0]=-B;
for(i=1;i<=n;i++)for(j=1;j<=A;j++)v[i][j]+=v[i][j-1];
for(i=0;i<n;i++)for(j=0;j<4;j++)for(k=1;k<4;k++)for(x=0;x<2;x++)if(f[i][j][k][x]<inf){
w=f[i][j][k][x];
for(a=0;a<=A;a++){
if(sum(i+1,0,a)<sum(i+1,0,A))continue;
nj=1;
if(a==A)nj|=2;
nk=k&1;
if((j>>1)&&!(k>>1))continue;
if(a==A)nk|=(k&1)<<1;
if(x==0){
up(f[i+1][nj][nk][0],w+B+a*2);
if(a==A)up(f[i+1][nj][nk][1],w+B+A);
}
}
for(a=0;a<=A;a++){
if(sum(i+1,a,A)<sum(i+1,0,A))continue;
nj=2;
if(a==0)nj|=1;
nk=(k>>1)<<1;
if((j&1)&&!(k&1))continue;
if(a==0)nk|=k>>1;
if(x==1){
up(f[i+1][nj][nk][1],w+B+(A-a)*2);
if(a==0)up(f[i+1][nj][nk][0],w+B+A);
}
}
for(a=0;a<=A;a++)for(b=a+1;b<=A;b++){
if(sum(i+1,0,a)+sum(i+1,b,A)<sum(i+1,0,A))continue;
nj=3;
nk=k;
up(f[i+1][nj][nk][x],w+B*3+(a+A-b)*2);
nk=k&1;
if(x==0)if(!(j>>1)||(k>>1))up(f[i+1][nj][nk][0],w+B+(a+A-b)*2);
nk=(k>>1)<<1;
if(x==1)if(!(j&1)||(k&1))up(f[i+1][nj][nk][1],w+B+(a+A-b)*2);
}
up(f[i+1][3][3][x],w+B*3+A*2);
up(f[i+1][3][3][x^1],w+B*3+A);
}
ans=f[n][1][1][0];
up(ans,f[n][3][3][0]);
return printf("%d",ans),0;
}
BZOJ2512 : Groc的更多相关文章
- 论文解读(GROC)《Towards Robust Graph Contrastive Learning》
论文信息 论文标题:Towards Robust Graph Contrastive Learning论文作者:Nikola Jovanović, Zhao Meng, Lukas Faber, Ro ...
- Android自动化学习笔记:获取APK包名的几种方法
---------------------------------------------------------------------------------------------------- ...
- Pascal编译器大全(非常难得)
http://www.pascaland.org/pascall.htm Some titles (french) : Compilateurs Pascal avec sources = compi ...
- Go-GRPC 初体验
grpc 跟常见的client-server模型相似(doubbo)grpc 编码之前需要准备以下环境: 安装protobuf,grpc的client与server之间消息传递使用的protoc格式消 ...
- python模块大全
python模块大全2018年01月25日 13:38:55 mcj1314bb 阅读数:3049 pymatgen multidict yarl regex gvar tifffile jupyte ...
- SAS笔记
SAS基础知识 SAS里面的PROC一览 The ACECLUS Procedure : 聚类的协方差矩阵近似估计(approximate covariance estimation for clus ...
- C链表的简单案例
此案例只是简单的使用链表 链表的特点: 1.不需要提前知道要存入数据的长度 2.最后结点为NULL 3.头结点指向下一个结点的结构体指针 #include <stdio.h> #inclu ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 论文解读(SimGRACE)《SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation》
论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者: ...
随机推荐
- git如何创建 .gitignore文件
1.右键 点击git bash here 2.输入 touch .gitignore 生成 .gitignore文件 过滤 不上传 node_modules/
- 微信小程序--WXS---JS 代码插入
主页要使用的JS代码放在index.js里面 例 Page({ data: { array: [1, 2, 3, 4, 5, 1, 2, 3, 4] } }) 只复制以下这段 data: { arra ...
- Windows系统下安装运行Kafka
一.安装JAVA JDK 1.下载安装包 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151. ...
- CentOS 6.9 NFS安装和配置
1.安装依赖包 yum install nfs-utils rpcbind -y 2.开机启动 chkconfig rpcbind on chkconfig nfs on 3.创建一个共享目录和加权限 ...
- 牛客网练习赛t2(线段树)
题解: 好像因为他说了 数据范围全部在ll以内 所以直接暴力就可以过了 比较正常是用线段树来维护 洛谷上有道模板题是支持加,乘,区间和 而这题还多了区间平方和的操作 按照那题的操作 我们维护的时候保证 ...
- [转]Tor Browser在国内Windows平台下的超详细教程
https://cloudfra.com/tor-browser-windows.html 下载与安装 首先,你必须身处科学式网络(实在怕网站再出问题),接着就可以点击打开Tor Browser官网, ...
- 一起学Hadoop——Hadoop的前世今生
Hadoop是什么? Hadoop是一个处理海量数据的开源框架.2002年Nutch项目面世,这是一个爬取网页工具和搜索引擎系统,和其他众多的工具一样,都遇到了在处理海量数据时效率低下,无法存储爬取网 ...
- Flink-- 数据输出Data Sinks
flink在批处理中常见的sink 1.基于本地集合的sink(Collection-based-sink) 2.基于文件的sink(File-based-sink) 基于本地集合的sink(Coll ...
- net core体系-web应用程序-4net core2.0大白话带你入门-5asp.net core环境变量详解
asp.net core环境变量详解 环境变量详解 Windows操作系统的环境变量在哪设置应该都知道了. Linux(centos版本)的环境变量在/etc/profile里面进行设置.用户级的 ...
- UOJ#23. 【UR #1】跳蚤国王下江南 仙人掌 Tarjan 点双 圆方树 点分治 多项式 FFT
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ23.html 题目传送门 - UOJ#23 题意 给定一个有 n 个节点的仙人掌(可能有重边). 对于所有 ...