单源最短路径Dijkstra算法,多源最短路径Floyd算法
1.单源最短路径
(1)无权图的单源最短路径
/*无权单源最短路径*/
void UnWeighted(LGraph Graph, Vertex S)
{
std::queue<Vertex> Q;
Vertex V;
PtrToAdjVNode W;
Q.push(S);
while (!Q.empty())
{
V = Q.front();
Q.pop();
for (W = Graph->G[V].FirstEdge; W; W = W->Next)
if (dist[W->AdjV] != -)
{
dist[W->AdjV] += dist[V] + ;
path[W->AdjV] = V;
Q.push(W->AdjV);
} } }
函数:返回还未被收录顶点中dist最小者
Vertex FindMinDist(MGraph Graph, int dist[], int collected[])
{
/*返回未被收录顶点中dist最小者*/
Vertex MinV, V;
int MinDist = INFINITY; for (V = ; V < Graph->Nv; ++V)
{
if (collected[V] == false && dist[V] < MinDist)
{
MinDist = dist[V];
MinV = V; //更新对应顶点
}
}
if (MinDist < INFINITY) //若找到最小值
return MinV;
else
return -;
}
(2)有权图的单源最短路径
单源最短路径Dijkstra算法
/*单源最短路径Dijkstra算法*/
/*dist数组存储起点到这个顶点的最小路径长度*/
bool Dijkstra(MGraph Graph, int dist[], int path[], Vertex S)
{
int collected[MaxVertexNum];
Vertex V, W; /*初始化,此处默认邻接矩阵中不存在的边用INFINITY表示*/
for (V = ; V < Graph->Nv; V++)
{
dist[V] = Graph->G[S][V]; //用S顶点对应的行向量分别初始化dist数组
if (dist[V] < INFINITY) //如果(S, V)这条边存在
path[V] = S; //将V顶点的父节点初始化为S
else
path[V] = -; //否则初始化为-1
collected[V] = false; //false表示这个顶点还未被收入集合
} /*现将起点S收录集合*/
dist[S] = ; //S到S的路径长度为0
collected[S] = true; while ()
{
V = FindMinDist(Graph, dist, collected); //V=未被收录顶点中dist最小者
if (V == -) //如果这样的V不存在
break;
collected[V] = true; //将V收录进集合
for (W = ; W < Graph->Nv; W++) //对V的每个邻接点
{
/*如果W是V的邻接点且未被收录*/
if (collected[W] == false && Graph->G[V][W] < INFINITY)
{
if (Graph->G[V][W] < ) //若有负边,不能正常解决,返回错误标记
return false ;
if (dist[W] > dist[V] + Graph->G[V][W])
{
dist[W] = dist[V] + Graph->G[V][W]; //更新dist[W]
path[W] = V; //更新S到W的路径
}
}
}
}
return true;
}
2.多源最短路径Floyd算法
/*多源最短路径*/
bool Floyd(MGraph Graph, WeightType D[][MaxVertexNum], Vertex path[][MaxVertexNum])
{
Vertex i, j, k; /*初始化*/
for (i = ; i < Graph->Nv; i++)
for (j = ; j < Graph->Nv; j++)
{
D[i][j] = Graph->G[i][j];
path[i][j] = -;
} for (k = ; k < Graph->Nv; k++)
for (i = ; i < Graph->Nv; i++)
for (j = ; j < Graph->Nv; j++)
{
if (D[i][k] + D[k][j] < D[i][j])
D[i][j] = D[i][k] + D[k][j];
if (i == j && D[i][j] < ) //若发现负值圈,不能正常解决,返回错误标记
return false;
path[i][j] = k;
}
return true; //算法执行完毕,返回正确标记
}
单源最短路径Dijkstra算法,多源最短路径Floyd算法的更多相关文章
- 多源最短路径,一文搞懂Floyd算法
前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...
- [C++]多源最短路径(带权有向图):【Floyd算法(动态规划法)】 VS n*Dijkstra算法(贪心算法)
1 Floyd算法 1.1 解决问题/提出背景 多源最短路径(带权有向图中,求每一对顶点之间的最短路径) 方案一:弗洛伊德(Floyd算法)算法 算法思想:动态规划法 时间复杂度:O(n^3) 形式上 ...
- 多源最短路径算法—Floyd算法
前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...
- 多源最短路径Floyd算法
多源最短路径是求图中任意两点间的最短路,采用动态规划算法,也称为Floyd算法.将顶点编号为0,1,2...n-1首先定义dis[i][j][k]为顶点 i 到 j 的最短路径,且这条路径只经过最大编 ...
- 最短路径—Dijkstra算法和Floyd算法
原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...
- 最短路径—Dijkstra算法和Floyd算法【转】
本文来自博客园的文章:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法 1.定义概览 Dijk ...
- 【转载】最短路径—Dijkstra算法和Floyd算法
注意:以下代码 只是描述思路,没有测试过!! Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始 ...
- 最短路径Dijkstra算法和Floyd算法整理、
转载自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最短路径—Dijkstra算法和Floyd算法 Dijks ...
- 【转】最短路径——Dijkstra算法和Floyd算法
[转]最短路径--Dijkstra算法和Floyd算法 标签(空格分隔): 算法 本文是转载,原文在:最短路径-Dijkstra算法和Floyd算法 注意:以下代码 只是描述思路,没有测试过!! Di ...
- 最短路径—大话Dijkstra算法和Floyd算法
Dijkstra算法 算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , ...
随机推荐
- 一个SQL查询出每门课程的成绩都大于80的学生姓名
name kecheng fenshu 张三 语文 81 张三 数学 75 李四 语文 76 李四 数学 90 王五 ...
- 解决无法连接mysql问题
解决无法连接mysql问题 在my.ini文件下加入explicit_defaults_for_timestamp 清空data文件夹 Cmd初始化mysql 输入>Mysqld --in ...
- 强化git
[场景1]git 提交本地代码到远程master 1.git init 2.git add . 3.git commit -m " " 4.git remote add origi ...
- 1. Two Sum&&15. 3Sum&&18. 4Sum
题目: 1. Two Sum Given an array of integers, return indices of the two numbers such that they add up t ...
- python自动化测试入门篇-jemter参数化
一.Jmeter参数化 1.使用用户自定义变量 用户定义的变量,引用方式:${定义参数名称};例如定义一个变量IP,使用它的时候用 ${IP}. 添加一个 User Defined Variables ...
- es6中...是什么意思。
1. var set = new Set([1, 2, 3, 4, 4,4,4,4,2,2,2]) set=[...set] 2. let [head, ...tail] = [1, 2, 3, 4] ...
- 使用js实现思维导图
使用js实现思维导图 demo:http://rockyren.github.io/mindmaptree/ 源码:http://github.com/RockyRen/mindmaptree/tre ...
- 最全的测试用例(UI)
一.文本框为字符型 必填项非空校验: 1.必填项未输入--程序应提示错误: 2.必填项只输入若干个空格,未输入其它字符--程序应提示错误: 字段唯一性校验:(不是所有字段都作此项校 ...
- Makefile 系统论述
该篇文章为转载,是对原作者系列文章的总汇加上标注. 支持原创,请移步陈浩大神博客: http://blog.csdn.net/haoel/article/details/2886 概述 什么是make ...
- Vue(三) v-bind 及 class 与 style 绑定
DOM 元素经常会动态绑定一些 class 类名 或 style 样式,现在介绍使用 v-bind 指令来绑定 class 和 style 的多种方法. 了解 v-bind 指令 在之前已经介绍了指令 ...