dijkstra是一种单源最短路算法。在没有负权值的图上,vi..vj..vk是vi到vk最短路的话,一定要走vi到vj的最短路。所以每次取出到起点距离最小的点,从该点出发更新邻接的点的距离,如果更新成功则把新点加入priority_queue。储存图使用的是邻接表。代码如下:

#include <bits/stdc++.h>//有向图
using namespace std;
//dijkstra 不适用于带负权的图
const int maxn = , maxm = , INF = 0x3f3f3f;// maxn比顶点数略大,maxm比边数略大
int head[maxn], vis[maxn], dis[maxn], fa[maxn];
int next[maxm], u[maxm], v[maxm], w[maxm];
typedef pair<int, int> pi;// pair排序策略是优先排前面,pair把距离放前面,点放后面
int n, m;
void ini()
{
memset(vis, , sizeof(vis));//开始所有点都没被处理
memset(head, -, sizeof(head));//所有点都没有边
for(int i = ; i <= n; i++)
dis[i] = INF;//起点到所有点距离为无穷大
} void dij(int s, int e)
{
priority_queue<pi, vector<int>, greater<int> > Q;//优先队列
dis[s] = ;
Q.push(make_pair(dis[s], s));
while(!Q.empty())
{
pi u = Q.top();
Q.pop();//取出d最小的点
int x = u.second;
if(x == e)
break;
if(vis[x])//处理过,跳过
continue;
vis[x] = ;
for(int i = head[x]; ~i; i = next[i])//更新从当前d最小的点相邻点的距离
{
if(dis[v[i]] > dis[x] + w[i])
{
dis[v[i]] = dis[x] + w[i];//松弛成功
fa[v[i]] = x;
Q.push(make_pair(dis[v[i]], v[i]));//把更新成功的点加入队列
}
}
}
if(dis[e] == INF)
return;//s到e无路径
vector<int> ans;//用vector从终点往起点找路径,也可以用递归
int temp = e;
while(temp!=s)
{
ans.push_back(temp);
temp = fa[temp];
}
ans.push_back(s);
for(int i = ans.size()-; i >= ; i--)
printf("%d ", ans[i]);
printf("\n%d\n", dis[e]);
} int main()
{
//freopen("in.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &n, &m);
ini();
for(int i = ; i < m; i++)
{
scanf("%d%d%d", u+i, v+i, w+i);
next[i] = head[u[i]];
head[u[i]] = i;//建立邻接表
}
int S, E;//起点终点
scanf("%d%d", &S, &E);
dij(S, E);
}
return ;
}

dijkstra经典的一比,不过要求不能含负权,于是又学了下能处理带负权图的spfa:

spfa感觉有点像bfs,但bfs只处理一个节点一次,而spfa如果松弛了路径上经过的节点,就要对路径上之后的点都更新一遍。有负环的话,每走一遍负环,距离就减小环长,也就不存在最短路,所以假定不存在负环(或者判断一下有无负环)。代码如下:

#include <bits/stdc++.h>//有向图
using namespace std;
const int maxn = , maxm = , INF = 0x3f3f3f3f;
int head[maxn], in[maxn], dis[maxn], fa[maxn];//in标记在queue中的点
int u[maxm], v[maxm], w[maxm], next[maxm];
int n, m; void ini()
{
memset(in, , sizeof(in));
memset(head, -, sizeof(head));
for(int i = ; i <= n; i++)
dis[i] = INF;
} void print(int s, int e)//递归打印路径
{
if(e!=s)
print(s, fa[e]);
printf("%d ", e);
} void spfa(int s, int e)//有点像bfs,不过bfs不会处理之前处理过的点
{
queue<int> Q;
dis[s] = ;
in[s] = ;
Q.push(s);
while(!Q.empty())
{
int x = Q.front();
Q.pop();
in[x] = ;
for(int i = head[x]; ~i; i = next[i])
{
if(dis[v[i]] > dis[x] + w[i])
{
dis[v[i]] = dis[x] + w[i];
fa[v[i]] = x;
if(!in[v[i]])
{
Q.push(v[i]);
in[v[i]] = ;
}
}
}
}
print(s, e);
printf("\n%d\n", dis[e]);
}
int main()
{
freopen("in.txt", "r", stdin);
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &n, &m);
ini();
for(int i = ; i < m; i++)
{
scanf("%d%d%d", u+i, v+i, w+i);
next[i] = head[u[i]];
head[u[i]] = i;
}
int s, e;
scanf("%d%d", &s, &e);
spfa(s, e);
}
return ;
}

多源最短路径有个floyd算法,其实就是离散讲的warshall闭包:(但是因为时间复杂度O(n^3)有点嫌弃2333),没自己实现一下,核心代码如下:

    for(int k = ; k <= n; k++)
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
if(g[i][j] > g[i][k] + g[k][j])
g[i][j] = g[i][k] + g[k][j];

思路是开始用邻接矩阵存放图,更新两点距离只能靠经过其他点中转,所以每次多允许经过一个点(即第一个循环),考虑最短路(第二三重循环)。

floyd好处是代码短,能一次求出所有节点之间的最短路。

今天收获挺大,总结一下稠密/无负权图用dijkstra,稀疏/有负权图用spfa,时间要求不高用floyd。

(心情依然很烂)

求最短路的三种方法:dijkstra,spfa,floyd的更多相关文章

  1. 最短路算法详解(Dijkstra/SPFA/Floyd)

    新的整理版本版的地址见我新博客 http://www.hrwhisper.me/?p=1952 一.Dijkstra Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路.所以Dijkst ...

  2. 清空StringBuilder的三种方法及效率

    清空StringBuilder的三种方法及效率 大家知道对于字符串频繁拼接是使用stringbuilder.Append方法比使用string+=方法效率高很多,但有时需要清空stringbuilde ...

  3. mysql分表的三种方法

    先说一下为什么要分表当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了.分表的目的就在于此,减小数据库的负担,缩短查询时间.根据个人经验,mysql执行一 ...

  4. java 获取随机数的三种方法

    方法1(数据类型)(最小值+Math.random()*(最大值-最小值+1))例:(int)(1+Math.random()*(10-1+1))从1到10的int型随数 方法2获得随机数for (i ...

  5. 三种方法实现PCA算法(Python)

    主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目 ...

  6. 使用三种方法求解前N个正整数的排列

    本篇博文给大家介绍前N个正整数的排列求解的三种方式.第一种是暴力求解法:第二种则另外声明了一个长度为N的数组,并且将已经排列过的数字保存其中:第三种方式则采用了另外一种思路,即首先获取N个整数的升序排 ...

  7. 三种方法实现Hadoop(MapReduce)全局排序(1)

    我们可能会有些需求要求MapReduce的输出全局有序,这里说的有序是指Key全局有序.但是我们知道,MapReduce默认只是保证同一个分区内的Key是有序的,但是不保证全局有序.基于此,本文提供三 ...

  8. 数组k平移三种方法(java)

    上代码,本文用了三种方法实现,时间复杂度不一样,空间复杂度都是o(1): public class ArrayKMove { /** * 问题:数组的向左k平移,k小于数组长度 * @param ar ...

  9. 服务器文档下载zip格式 SQL Server SQL分页查询 C#过滤html标签 EF 延时加载与死锁 在JS方法中返回多个值的三种方法(转载) IEnumerable,ICollection,IList接口问题 不吹不擂,你想要的Python面试都在这里了【315+道题】 基于mvc三层架构和ajax技术实现最简单的文件上传 事件管理

    服务器文档下载zip格式   刚好这次项目中遇到了这个东西,就来弄一下,挺简单的,但是前台调用的时候弄错了,浪费了大半天的时间,本人也是菜鸟一枚.开始吧.(MVC的) @using Rattan.Co ...

随机推荐

  1. java最简单实现Log打印和生成日志文件

    导包 1.commons-logging.jar包 下载 2.log4j.jar包 下载 配置log4j 1.在src根目录下创建一个log4j.properties文件. 文件全部内容如下: log ...

  2. CMD 命令2

    cd  %~dp0 切换到当前脚本所有目录 批处理常用命令总结 - 批处理命令简介 目录 echo 打开回显或关闭请求回显功能,或显示消息.如果没有任何参数,echo 命令将显示当前回显设置. ech ...

  3. 【Linux】使用Google Authenticator 实现ssh登录双因素认证

    一般来说,使用ssh远程登录服务器,只需要输入账号和密码,显然这种方式不是很安全.为了安全着想,可以使用GoogleAuthenticator(谷歌身份验证器),以便在账号和密码之间再增加一个验证码, ...

  4. blender show normals

    https://blenderartists.org/forum/showthread.php?193096-Blender-2-5-how-to-show-normals-in-viewport

  5. 每天学习一个Linux命令-目录

    在工作中总会零零散散使用到各种Linux命令,从今天开始详细的学习一下linux常用命令,坚持每天一个命令,学习的主要参考资料为: 1.竹子-博客(https://www.cnblogs.com/pe ...

  6. Mac 开发必备 利器 iterm2 oh-my-zsh

    推荐终端神器 iterm2 以及 oh-my-zsh,可以研究一下怎么用,好的开发环境是可以提高效率的,以及alias 的使用. https://www.zhihu.com/question/2744 ...

  7. comake2

    http://blog.csdn.net/lsjseu/article/details/23395565 comake允许用户通过编写COMAKE文件,来帮助用户管理编译依赖以及编译环境的开发工具: ...

  8. CMakeLists

    #cmake最低版本需求,不加入此行会受到警告信息CMAKE_MINIMUM_REQUIRED(VERSION 2.6)PROJECT(HELLO) #项目名称#把当前目录(.)下所有源代码文件和头文 ...

  9. (原)kenel开机logo的制作

    今天项目需要,需要制作一个kernel的开机logo,所以在rk3288的平台上进行测试一番. 第一步:配置kernel:选上CONFIG_LOGO_LINUX_CLUT224选项 make menu ...

  10. VMware ESXI添加第三方网卡驱动

    VMware ESXI有两种方法添加第三方网卡驱动: 1.使用第三方工具 ESXI-Customizer.cmd工具可以将已经下载好的VMware ESXI.ISO镜像文件把下载好的驱动添加到里面,缺 ...