树是由根结点和若干颗子树构成的。树是由一个集合以及在该集合上定义的一种关系构成的。集合中的元素称为树的结点,所定义的关系称为父子关系。父子关系在树的结点之间建立了一个层次结构。在这种层次结构中有一个结点具有特殊的地位,这个结点称为该树的根结点,或称为树根。

相关概念

  • 根节点:树中最顶部的元素

  • 父节点:处了根节点都有父节点,每个节点最多只有一个父节点

  • 孩子节点:一个父节点具有0个或多个孩子节点

  • 兄弟节点:同一个父节点的孩子节点之间是兄弟关系

  • 外部节点:一个没有孩子的节点称为外部节点,也叫叶子结点

  • 内部节点:有一个或多个孩子节点的节点叫做内部节点

  • 树的边:指一对节点(u,v),其中u是v的父节点或者v是u的父节点

  • 树的路径:一系列连续的边组成了一条路径

  • 节点的深度:节点的深度就是该节点的祖先的个数,不包括该节点本身,如果根节点的层数为1,则深度即为该节点的层数-1

  • 节点的高度:如果p是树中的叶子节点,那么它的高度为0.否则p的高度是它的孩子节点中的最大高度+1

  • 有序树:每个孩子之间有一定的顺序,例如:

一个树的抽象基类


class Tree():
"""
树的抽象基类
""" # 叫做位置的内嵌类,用于封装节点
class Position(): def element(self):
raise NotImplementedError('must be implemented by subclass') def __eq__(self, other):
raise NotImplementedError('must be implemented by subclass') def root(self):
"""
return 根节点的position
"""
raise NotImplementedError('must be implemented by subclass') def parent(self,p):
""" :param p:一个位置对象
:return: 返回p的父节点的position对象,如果p是根节点则饭后空
"""
raise NotImplementedError('must be implemented by subclass') def num_children(self,p):
""" :param p:一个位置对象
:return: 返回该位置的孩子节点的数量
"""
raise NotImplementedError('must be implemented by subclass') def children(self,p):
""" :param p: 一个位置对象
:return: 返回位置p的孩子的迭代
"""
raise NotImplementedError('must be implemented by subclass') def __len__(self):
""" :return: 返回整个树的节点个数
"""      raise NotImplementedError('must be implemented by subclass') def is_root(self,p):
return self.root() == p def is_leaf(self,p):
return self.num_children(p) == 0 def is_empty(self):
return len(self) == 0

这个抽象类中的方法必须在子类中实现才能调用,不然会产生NotImplementedError(‘must be implemented by subclass’)的异常

除此之外,对于Position()这个内嵌类可能较难理解,为什么要有这么一个内嵌类

这个内嵌类目前也是抽象类,具体方法都没有实现,但使用它的目的已经有了,就是将树中的节点进行封装,那为什么要封装节点呢?当调用树的相关方法时,节点可能为一个必要的参数,但我们手动传入时,实际上可以是任意的对象,这就会导致错误发生,所以我们必须保证传入的节点是节点的对象,同时也是本树对象的节点,不然就会弄混树与树的节点。同时将节点进行封装,可以避免使用者直接使用节点对象本身,相关节点的方法可以在封装成的Position对象调用。目前只是抽象类的定义,节点类等其他方法还未定义,后面还会看到具体的position对象的使用。

目前有了Tree这个抽象类,虽然其中的大多数方法还是抽象方法,但使用这些方法已经可以构成一些其他的功能了,所以就有了is_root,is_leaf,is_empty方法的定义。同时还可以定义计算节点的深度与高度的方法:


def depth(self,p):
"""
计算节点在树中的深度
"""
if self.is_root(p):
return 0
else:
return 1 + self.depth(self.parent(p)) def height(self,p):
"""
计算节点在树中的深度
"""
if self.is_leaf(p):
return 0
else:
return 1 + max(self.height(c) for c in self.children(p))

二叉树

我们现在介绍一种树的特殊化形式二叉树

二叉树的特点:

  • 每个父节点最多只有两个孩子节点

  • 两个孩子节点又叫做左孩子和右孩子

  • 以左孩子为根节点形成的树叫做左子树,以右孩子为根节点形成的树叫做右子树

  • 如果除了最下面的一层节点,其余节点组成的是一颗满二叉树,并且最下面的这层节点遵循从左到右依次添加的顺序,那么这个树就叫做完全二叉树

  • 非空完全二叉树中,外部节点数=内部节点数+1

二叉树的实现可以以继承树的抽象类的方式实现:


class BinaryTree(Tree): class Node(): def __init__(self, element, parent=None, left=None, right=None):
self.element = element
self.parent = parent
self.left = left
self.right = right class Position(Tree.Position): def __init__(self, container, node):
self.container = container
self.node = node def element(self):
return self.node.element def __eq__(self, other):
return isinstance(other, type(self)) and other.node is self.node def validate(self, p):
"""
进行位置验证
"""
if not isinstance(p, self.Position):
raise TypeError('p must be proper Position type')
if p.container is not self:
raise ValueError('p does not belong to this container')
if p.node.parent is p.node:
raise ValueError('p is no longer valid')
return p.node def make_position(self, node):
"""
封装节点
"""
return self.Position(self, node) if node is not None else None def __init__(self):
self._root = None
self.size = 0 def __len__(self):
return self.size def root(self):
return self.make_position(self._root) def parent(self, p):
node = self.validate(p)
return self.make_position(node.parent) def left(self, p):
node = self.validate(p)
return self.make_position(node.left) def right(self, p):
node = self.validate(p)
return self.make_position(node.right) def sibling(self, p):
parent = self.parent(p)
if parent is None:
return None
else:
if p == self.left(parent):
return self.right(parent)
else:
return self.left(parent) def num_children(self, p):
node = self.validate(p)
count = 0
if node.left is not None:
count += 1
if node.right is not None:
count += 1
return count
   def children(self,p):
if self.left(p) is not None:
yield self.left(p)
if self.right(p) is not None:
yield self.right(p)

代码中将之前的抽象方法进行了完整的定义,同时添加了validate与make_position方法。validate方法用于对传入的position参数进行验证,make_position方法用于将节点进行封装。除此之外还添加了二叉树特有的方法right,left和sibling,left与right分别返回节点的左孩子节点与右孩子节点,sibling返回的是节点的兄弟节点。

目前的二叉树的数据结构只是创建了一颗空树,我们接下来要加入的是对二叉树进行更新操作的方法


def add_root(self, e):
if self._root is not None:
raise ValueError('Root exists')
self.size += 1
self._root = self.Node(e)
return self.make_position(self._root) def add_left(self, e, p):
node = self.validate(p)
if node.left is not None:
raise ValueError('Left child exists')
self.size += 1
node.left = self.Node(e, node)
return self.make_position(node.left) def add_right(self, e, p):
node = self.validate(p)
if node.right is not None:
raise ValueError('Left child exists')
self.size += 1
node.right = self.Node(e, node)
return self.make_position(node.right) def replace(self, p, e):
node = self.validate(p)
old = node.element
node.element = e
return old def delete(self, p):
"""
删除该位置的节点,如果该节点有两个孩子,则会产生异常,如果只有一个孩子,
则使其孩子代替该节点与其双亲节点连接
"""
node = self.validate(p)
if self.num_children(p) == 2:
raise ValueError('p has two children')
child = node.left if node.left else node.right
if child is not None:
child.parent = node.parent
if node is self._root:
self._root = child
else:
parent = node.parent
if node is parent.left:
parent.left = child
else:
parent.right = child
self.size -= 1
node.parent = node
return node.element

总共加入了添加根节点,添加左孩子,添加右孩子,代替元素和删除节点5个方法,其中删除几点稍微有一些复杂,因为涉及到许多情况的判断。

到现在,一个完整的二叉树数据结构基本完成了。

但是我们还需要掌握一个算法,就是树的遍历算法

树的遍历

树的遍历一般有先序遍历,后序遍历,广度优先遍历(层序遍历),对于二叉树还有中序遍历

先序遍历

先序遍历是按照根节点->从左到右的孩子节点的顺序遍历,而且把每个孩子节点看作是子树的根节点同样如此,例如:

用python实现先序遍历为:


def preorder(self,p):
"""
先序遍历节点p为根节点的树
"""
yield p
for c in self.children(p):
for other in self.preorder(c):
yield other

虽然代码只有4行,但理解起来却不是很容易的,首先该方法是一个生成器,所以通过yield返回一个可迭代对象,也就是可以for循环该方法,由于是先序遍历,所以要先yield p,之后便要返回孩子节点,由于孩子节点可能还具有孩子,所以并不能只返回孩子节点,应该返回以孩子节点为根节点的树的所有节点,而要想for循环得到左右的孩子节点为根节点的所有节点,还需要调用孩子节点的先序遍历方法才能得到。总而言之,代码理解的难度还是由于递归算法造成的,一个复杂的递归终归还是不是那么容易就能看出来的。

后序遍历

后序遍历是按照先从左到右孩子节点->根节点,如图:

用python实现:


def postorder(self,p):
"""
后序遍历节点p为根的树
"""
for c in self.children(p):
for other in self.postorder(c):
yield other
yield p

理解与先序遍历相同

广度优先遍历

广度优先遍历也叫层序遍历,一层一层的遍历,如图:

用python实现:


def breadthfirst(self):
if not self.is_empty():
queue = Queue()
queue.enqueue(self.root())
while not queue.is_empty():
p = queue.dequeue()
yield p
for i in self.children(p):
queue.enqueue(i)

中序遍历二叉树

对于二叉树,遍历顺序为左孩子->父节点->右孩子

python实现为:


def inorder(self,p):
if self.left(p) is not None:
for other in self.inorder(self.left(p)):
yield other
if self.right(p) is not None:
for other in self.inorder(self.right(p)):
yield other

参考《数据结构与算法Python语言实现》

用Python实现数据结构之树的更多相关文章

  1. Python与数据结构[3] -> 树/Tree[2] -> AVL 平衡树和树旋转的 Python 实现

    AVL 平衡树和树旋转 目录 AVL平衡二叉树 树旋转 代码实现 1 AVL平衡二叉树 AVL(Adelson-Velskii & Landis)树是一种带有平衡条件的二叉树,一棵AVL树其实 ...

  2. Python与数据结构[3] -> 树/Tree[1] -> 表达式树和查找树的 Python 实现

    表达式树和查找树的 Python 实现 目录 二叉表达式树 二叉查找树 1 二叉表达式树 表达式树是二叉树的一种应用,其树叶是常数或变量,而节点为操作符,构建表达式树的过程与后缀表达式的计算类似,只不 ...

  3. 用python讲解数据结构之树的遍历

    树的结构 树(tree)是一种抽象数据类型或是实现这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合 它具有以下的特点: ①每个节点有零个或多个子节点: ②没有父节点的节点称为根节点: ③ ...

  4. Python与数据结构[3] -> 树/Tree[0] -> 二叉树及遍历二叉树的 Python 实现

    二叉树 / Binary Tree 二叉树是树结构的一种,但二叉树的每一个节点都最多只能有两个子节点. Binary Tree: 00 |_____ | | 00 00 |__ |__ | | | | ...

  5. 用Python实现数据结构之二叉搜索树

    二叉搜索树 二叉搜索树是一种特殊的二叉树,它的特点是: 对于任意一个节点p,存储在p的左子树的中的所有节点中的值都小于p中的值 对于任意一个节点p,存储在p的右子树的中的所有节点中的值都大于p中的值 ...

  6. python数据结构之树和二叉树(先序遍历、中序遍历和后序遍历)

    python数据结构之树和二叉树(先序遍历.中序遍历和后序遍历) 树 树是\(n\)(\(n\ge 0\))个结点的有限集.在任意一棵非空树中,有且只有一个根结点. 二叉树是有限个元素的集合,该集合或 ...

  7. python数据结构之树(二分查找树)

    本篇学习笔记记录二叉查找树的定义以及用python实现数据结构增.删.查的操作. 二叉查找树(Binary Search Tree) 简称BST,又叫二叉排序树(Binary Sort Tree),是 ...

  8. [0x00 用Python讲解数据结构与算法] 概览

    自从工作后就没什么时间更新博客了,最近抽空学了点Python,觉得Python真的是很强大呀.想来在大学中没有学好数据结构和算法,自己的意志力一直不够坚定,这次想好好看一本书,认真把基本的数据结构和算 ...

  9. python利用Trie(前缀树)实现搜索引擎中关键字输入提示(学习Hash Trie和Double-array Trie)

    python利用Trie(前缀树)实现搜索引擎中关键字输入提示(学习Hash Trie和Double-array Trie) 主要包括两部分内容:(1)利用python中的dict实现Trie:(2) ...

随机推荐

  1. 关于 Spring Security 5 默认使用 Password Hash 算法

    账户密码存储的安全性是一个很老的话题,但还是会频频发生,一般的做法是 SHA256(userInputpwd+globalsalt+usersalt) 并设置密码时时要求长度与大小写组合,一般这样设计 ...

  2. Android 性能优化-启动时间

    adb shell am start -W -n com.xxxx(包名)/xxx.xxxActivity(launch Activity)

  3. Jenkins之使用Pyinstaller构建Python应用程序

    目录 1. 极简概述 2. Jenkins配置 2.1 安装JDK 2.2 安装Jenkins 3. 安装Docker 4. 使用PyInstaller构建Python应用程序 4.1 Fork 一个 ...

  4. Jquery 跨域访问 Lightswitch OData Service

    修改lightswitch .server project web.config.添加如下内容就可以实现对ApplicationData.svc/跨域访问 <system.webServer&g ...

  5. 判断使用设备是PC还是phone

    <script type="text/javascript"> //如果是手机设备,则.. if(/Android|webOS|iPhone|iPod|BlackBer ...

  6. C#部分类与部分方法

    部分类也可以定义部分方法.部分方法在部分类中定义,但没有方法体,在另一个部分类中执行.在这两个部分类中,都要使用partial关键字. public partial class MyClass { p ...

  7. JavaWeb总结(国税)

    一.JavaWeb示例 1.1.Servlet Hello World&IDEA创建第一个Servlet 新建项目 选择maven 组织名与项目名 位置,完成 允许自动导入包 添加框架支持,变 ...

  8. HTTP 错误 500 调用loadlibraryex失败

    HTTP 错误 500.0 - Internal Server Error 调用 LoadLibraryEx 失败,在 ISAPI 筛选器 C:\Windows\Microsoft.NET\Frame ...

  9. centos7使用yum安装mysql 【转】

    转自:http://blog.csdn.net/eclothy/article/details/52733891 使用: yum install mariadb*    (注意,带星号) 安装好后,启 ...

  10. 【Java基础】11、java方法中只有值传递,没有引用传递

    public class Example { String testString = new String("good"); char[] testCharArray = {'a' ...