Python之多线程和多进程
一、多线程
1、顺序执行单个线程,注意要顺序执行的话,需要用join。
#coding=utf-8 from threading import Thread
import time def my_counter():
i = 0
for _ in range(100000000):
i = i + 1
return True def main():
thread_array = {}
start_time = time.time()
for tid in range(2):
t = Thread(target=my_counter)
t.start()
# join阻塞下个线程,除非当前线程执行完毕
t.join()
end_time = time.time()
print("Total time: {}".format(end_time - start_time)) if __name__ == '__main__':
执行结果:

2、同时执行两个并发线程
#coding=utf-8 from threading import Thread
import time def prn_obj(obj):
return '\n'.join(['%s:%s' % item for item in obj.__dict__.items()]) def my_counter():
i = 0
for _ in range(100000000):
i = i + 1
return True def main():
thread_array = {}
start_time = time.time()
for tid in range(2):
t = Thread(target=my_counter)
t.start()
thread_array[tid] = t
for i in range(2):
thread_array[i].join()
# print("thread type: {}".format(prn_obj(thread_array[i])))
print("thread type: {}".format(thread_array[i].name))
end_time = time.time()
print("Total time: {}".format(end_time - start_time)) if __name__ == '__main__':
main()
下面是用了打印所有属性的方法,这个方法代码中注释了,可重复利用的代码块

二、多进程
1、multiprocessing
multiprocessing是跨平台版本的多进程模块,它提供了一个Process类来代表一个进程对象,下面是示例嗲吗
import os
if __name__=='__main__':
print 'Process (%s) start...' % os.getpid()
pid = os.fork()
print pid
if pid==0:
print 'I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid())
else:
print 'I (%s) just created a child process (%s).' % (os.getpid(), pid)
这个程序如果用单进程写则需要执行10秒以上的时间,而用多进程则启动10个进程并行执行,只需要用1秒多的时间。
在python中建议使用多进程而不是多线程,因为在python的多线程中有个全局解释器锁,这样在做并发效率会不是很高。
进程和进程直接可以用不同的全局解释器锁,可以提高程序效率。
2、进程间通信Queue
进程和进程之前是独立的,如果需要通信就需要Queue创建的对象来处理
from multiprocessing import Process,Queue
import time def write(q):
for i in ['A','B','C','D','E']:
print('Put %s to queue' % i)
q.put(i)
time.sleep(0.5) def read(q):
while True:
v = q.get(True)
print('get %s form queue' %v) if __name__ == '__main__':
q = Queue()
pw = Process(target=write,args=(q,))
pr = Process(target=read,args=(q,))
pw.start()
pr.start()
pr.join()
pr.terminate()

3、进程池Pool
#coding=utf-8 from multiprocessing import Pool
import time def f(x):
print x*x
time.sleep(2)
return x*x if __name__ == '__main__':
'''定义启动的进程数量'''
pool = Pool(processes=5)
res_list = [] for i in range(10):
'''
以异步并行的方式启动进程,如果要同步等待的方式,
可以在每次启动进程之后调用res.get()方法
也可以使用Pool.appley
'''
res = pool.apply_async(f,[i,])
print('--------:',i)
res_list.append(res)
pool.close()
pool.join()
for r in res_list:
print "result",(r.get(timeout=5))

三、多线程与多进程的对比
在一般情况下多个进程的内存资源是相互独立的,而多线程可以共享同一个进程中的内存资源
#coding=utf-8 from multiprocessing import Process
import threading
import time
lock = threading.Lock() def run(info_list,n):
lock.acquire()
info_list.append(n)
lock.release()
print('%s' % info_list) if __name__ == '__main__':
info = []
for i in range(10):
# target为子进程执行的函数,args为需要给函数传递的参数
p = Process(target=run,args=[info,i])
p.start()
p.join()
time.sleep(1)#这里为了输出整齐让主进程的执行等一下子进程
print('-------------------threading---------------------')
for i in xrange(1,10):
p = threading.Thread(target=run,args=[info,i])
p.start()
p.join()

Python之多线程和多进程的更多相关文章
- Python的多线程和多进程
(1)多线程的产生并不是因为发明了多核CPU甚至现在有多个CPU+多核的硬件,也不是因为多线程CPU运行效率比单线程高.单从CPU的运行效率上考虑,单任务进程及单线程效率是最高的,因为CPU没有任何进 ...
- Python【多线程与多进程】
import time,threading print("=======串行方式.并行两种方式调用run()函数=======")def run(): print('哈哈哈') # ...
- python的多线程、多进程代码示例
python多进程和多线程的区别:python的多线程不是真正意义上的多线程,由于python编译器的问题,导致python的多线程存在一个PIL锁,使得python的多线程的CPU利用率比预期的要低 ...
- selenium +python之多线程与多进程应用于自动化测试
多线程与多进程与自动化测试用例结合起来执行,从而节省测试用例的总体运行时间. 多线程执行测试测试用例 以百度搜索为例,通过不同的浏览器来启动不同的线程. from selenium import we ...
- Python之多线程与多进程(二)
多进程 上一章:Python多线程与多进程(一) 由于GIL的存在,Python的多线程并没有实现真正的并行.因此,一些问题使用threading模块并不能解决 不过Python为并行提供了一个替代方 ...
- Python之多线程与多进程(一)
多线程 多线程是程序在同样的上下文中同时运行多条线程的能力.这些线程共享同一个进程的资源,可以在并发模式(单核处理器)或并行模式(多核处理器)下执行多个任务 多线程有以下几个优点: 持续响应:在单线程 ...
- python的多线程和多进程(一)
在进入主题之前,我们先学习一下并发和并行的概念: --并发:在操作系统中,并发是指一个时间段中有几个程序都处于启动到运行完毕之间,且这几个程序都是在同一个处理机上运行.但任一时刻点上只有一个程序在处理 ...
- Python中多线程与多进程的恩恩怨怨
概念: 并发:当有多个线程在操作时,如果系统只有一个CPU,则它根本不可能真正同时进行一个以上的线程,它只能把CPU运行时间划分成若干个时间段,再将时间 段分配给各个线程执行,在一个时间段的线程代码运 ...
- python的多线程、多进程、协程用代码详解
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:刘早起早起 PS:如有需要Python学习资料的小伙伴可以加点击下方链 ...
随机推荐
- hdu 4192 (表达式求值)
<题目链接> <转载于 >>> > 题目大意: 给你n个数,和一个最终的结果,再给你一个含有n个不同变量的式子,问你这个式子最终能否得到指定的答案. 解题分 ...
- zoj 1002 Fire Net 碉堡的最大数量【DFS】
题目链接 题目大意: 假设我们有一个正方形的城市,并且街道是直的.城市的地图是n行n列,每一个单元代表一个街道或者一块墙. 碉堡是一个小城堡,有四个开放的射击口.四个方向是面向北.东.南和西.在每一个 ...
- SNMP弱口令漏洞的使用
如果能获取只读(RO)或读/写(RW)权限的团体字符串,将对你从设备中提取信息发挥重要作用,snmp v1 v2天生存在安全缺陷,snmp v3中添加了加密功能提供了更好的检查机制,增强了安全性为了获 ...
- linux 服务器安装 nginx
每次安装 nginx 都在网上找教程,这次特意记录一下安装过程. 第一步:安装依赖 一键安装依赖 yum -y install gcc zlib zlib-devel pcre-devel opens ...
- SET ANSI_WARNINGS { ON | OFF }
SET ANSI_WARNINGS { ON | OFF } 注释 SET ANSI_WARNINGS 影响以下情况: 当设置为 ON 时,如果聚合函数(如 SUM.AVG.MAX.MIN.STDEV ...
- C# LnkHelper
using System; using System.Collections.Generic; using System.Text; using Microsoft.Win32; using Syst ...
- [iOS]有关开发过程中,代码之外的一些东西。
1.访问相册的权限 Privacy - Photo Library Usage Description //访问相册Privacy - Photo Library Additions Usage De ...
- BZOJ.1492.[NOI2007]货币兑换(DP 斜率优化 CDQ分治/Splay)
BZOJ 洛谷 如果某天能够赚钱,那么一定会在这天把手上的金券全卖掉.同样如果某天要买,一定会把所有钱花光. 那么令\(f_i\)表示到第\(i\)天所拥有的最多钱数(此时手上没有任何金券),可以选择 ...
- UOJ.35.[模板]后缀排序(后缀数组 倍增)
题目链接 论找到一个好的教程的正确性.. 后缀数组 下标从1编号: //299ms 2560kb #include <cstdio> #include <cstring> #i ...
- 英语口语练习系列-C34-儿童-谈论物品和人-武陵春
词汇-儿童 child a child favorite game toy regulation breadwinner dominant selfish ancestor custom belief ...