题意:

就是求1-n中有多少对i 和 j 的最小公倍数为n  (i <= j)

解析:

而这题,我们假设( a , b ) = n ,那么:

n=pk11pk22⋯pkss,

a=pd11pd22⋯pdss, b=pe11pe22⋯pess,

可以确定max(ei,di)=ki,      关于这点 可以自己反证一下

那么ki的组成就是ei与di中一个等于ki,

另一个任取[0,ki-1]中的一个数,

那么就有 2ki 种方案,

由于 ei=di=ki 只有一种,(两种都为ki)

所以第i位方案数为2ki+1,

有序对(a,b)方案数就是(2k1+1)(2k2+1)⋯(2ks+1),

无序对(a,b)方案数就是:{[(2k1+1)(2k2+1)⋯(2ks+1)] + 1}/2

(n,n)已经只有一个,不会重复,所以+1 再除 2。

题解转载至:https://blog.csdn.net/qq_15714857/article/details/48641121

代码:

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define maxn 10000900
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int LL_INF = 0x7fffffffffffffff,INF = 0x3f3f3f3f;
LL primes[maxn/];
bool vis[maxn];
LL ans = ;
void init()
{
mem(vis,);
for(int i=; i<maxn; i++)
if(!vis[i])
{
primes[ans++] = i;
for(LL j=(LL)i*i; j<maxn; j+=i)
vis[j] = ;
}
} int main()
{
init();
int T;
int kase = ;
cin>> T;
while(T--)
{
LL n, res = , cnt = ;
cin>> n;
for(LL i=; i<ans && primes[i] * primes[i] <= n; i++)
{
LL cnt2 = ;
while(n % primes[i] == )
{
n /= primes[i];
cnt2++;
}
if(cnt2 > )
{
res *= (*cnt2 + );
}
}
if(n > )
{
res *= ;
}
printf("Case %d: %lld\n",++kase,res/+);
}
return ;
}

Pairs Forming LCM LightOJ - 1236 (算术基本定理)的更多相关文章

  1. Pairs Forming LCM LightOJ - 1236 素因子分解

    Find the result of the following code: long long pairsFormLCM( int n ) {    long long res = 0;    fo ...

  2. G - Pairs Forming LCM LightOJ - 1236 (质因子分解)

    题解:这道题要从n的角度来考虑i和j. n可以表示为n=a1^p1*a2^p2*a3^p3.......n=lcm(i,j),那么质因子a1^p1,a1可以在i或者j中,并且p1=max(a1i,a1 ...

  3. Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)

    Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...

  4. LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1236 Pairs Forming LCM Time Limit:2000MS     Memor ...

  5. LightOJ 1236 - Pairs Forming LCM(素因子分解)

    B - Pairs Forming LCM Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  6. 1236 - Pairs Forming LCM

    1236 - Pairs Forming LCM   Find the result of the following code: long long pairsFormLCM( int n ) {  ...

  7. Pairs Forming LCM(素因子分解)

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/B    全题在文末. 题意:在a,b中(a,b<=n) ...

  8. Pairs Forming LCM (LCM+ 唯一分解定理)题解

    Pairs Forming LCM Find the result of the following code: ; i <= n; i++ )        for( int j = i; j ...

  9. Pairs Forming LCM

    题目: B - Pairs Forming LCM Time Limit:2000MS     Memory Limit:32768KB Description Find the result of ...

随机推荐

  1. ASP.NET Core 防止跨站请求伪造(XSRF/CSRF)攻击 (转载)

    什么是反伪造攻击? 跨站点请求伪造(也称为XSRF或CSRF,发音为see-surf)是对Web托管应用程序的攻击,因为恶意网站可能会影响客户端浏览器和浏览器信任网站之间的交互.这种攻击是完全有可能的 ...

  2. C#实现一张塔松叶

    前段时间,Insus.NET有实现一组字符串在输出时,靠左或靠右对齐.<输出的字符靠右对齐>http://www.cnblogs.com/insus/p/7953304.html 现在In ...

  3. Git .gitignore文件的使用

    本文转载自 http://blog.csdn.net/xmyzlz/article/details/8592302 在git中如果想忽略掉某个文件,不让这个文件提交到版本库中,可以使用修改 .giti ...

  4. Luogu P3327 [SDOI2015]约数个数和

    又是恶心的莫比乌斯反演,蒟蒻我又是一脸懵逼的被CXR dalao狂虐. 题目要求\(ans=\sum_{i=1}^n \sum_{j=1}^m d(ij)\),其中\(d(ij)\)表示数\(x\)的 ...

  5. jdbc操作根据bean类自动组装sql,天啦,我感觉我实现了hibernate

    场景:需要将从ODPS数仓中计算得到的大额可疑交易信息导入到业务系统的mysql中供业务系统审核.最简单的方式是用阿里云的组件自动进行数据同步了.但是本系统是开放是为了产品化,要保证不同环境的可移植性 ...

  6. PMO在组织中实现价值应做的工作

    PMO在组织中实现价值应做的工作 研发人员及项目经理常常对PMO有反感情绪,认为其不熟悉业务流程与技术.经常要求项目经理和研发人员提交形式化的材料,只审批和监控,不能为项目提供良好的服务.在很多企业, ...

  7. Oracle_忘记密码

    1.运行到C盘根目录 2.输入:SET ORACLE_SID = 你的SID名称 3.输入:sqlplus/nolog 4.输入:connect/as sysdba 5.输入:altre user s ...

  8. 转:SpringMVC之类型转换Converter(GenericConverter)

    转: http://blog.csdn.net/fsp88927/article/details/37692215 SpringMVC 之类型转换 Converter 1.1 目录 1.1 目录 1. ...

  9. 查看服务器系统资源(cpu,内容)利用率前几位的进程的方法

    在日常运维工作中,我们经常需要了解服务器上的系统资源的使用情况,要清楚知道一些重要进程所占的资源比例.这就需要熟练掌握下面几个命令的使用: 1)查看占用CPU最高的5个进程 # ps aux | so ...

  10. 【ML】ICML2015_Unsupervised Learning of Video Representations using LSTMs

    Unsupervised Learning of Video Representations using LSTMs Note here: it's a learning notes on new L ...