设函数$f(x)=2x-cosx,{a_n}$是公差为$\frac{\pi}{8}$的等差数列,$f(a_1)+f(a_2)+f(a_3)+f(a_4)+f(a_5)=5\pi$,则 $[f(a_3)]^2-a_2a_3=$_____

                                                                                 (2012四川理科高考填空压轴题)




分析:若定义在$R$上的函数$f(x)=s(x)+t(x),$其中$s(x)$关于$(p,m)$对称,$t(x)$关于$(p,n)$

        对称,则$f(x)$关于$(p,m+n)$对称。

解答:易知$s(x)=2x$关于$(x_0,2x_0),x_0\in R$对称.$t(x)=cosx$关于$(\frac{\pi}{2}+k\pi,0),k\in Z$

         对称.令$x_0=\frac{\pi}{2},$则$f(x)$关于$(\frac{\pi}{2},\pi)$对称.再结合$f(x)$的单调性由已知可知

         $a_3=\frac{\pi}{2},$从而易知答案为$\frac{13}{16}\pi^2$

MT【66]寻找对称中心的更多相关文章

  1. MT【205】寻找对称中心

    函数$f(x)=\dfrac{x}{x+1}+\dfrac{x+1}{x+2}+\cdots+\dfrac{x+2018}{x+2019}$ 的图像的对称中心_____ 提示:根据定义域可知如果有对称 ...

  2. MT【65】寻找零点

    已知$f(x)=3ax^2+2bx+b-a$($a,b$不同时为零). 求证:$f(x)$在$(-1,0)$内至少有一个零点. 证明:$f(-\frac{1}{3})f(-1)=-\frac{1}{3 ...

  3. EmgnCv进行轮廓寻找和计算物体凸包

    http://blog.csdn.net/qq_22033759/article/details/48029493 一.轮廓寻找 用的是FindContours函数,在CvInvoke中 不过需要用到 ...

  4. 寻找Linux单机负载瓶颈

    寻找Linux单机负载瓶颈 服务器性能上不去,是哪里出了问题?IO还是CPU?只有找到瓶颈点,才能对症下药: 如何寻找Linux单机负载瓶颈,遵循的原则是不要推测,我们要通过测量的数据说话: 负载分两 ...

  5. OpenJudge计算概论-寻找山顶

    /*===================================== 寻找山顶 总时间限制: 1000ms 内存限制: 65536kB 描述 在一个m×n的山地上,已知每个地块的平均高程,请 ...

  6. POJ C程序设计进阶 编程题#3:寻找山顶

    编程题#3:寻找山顶 来源: POJ (Coursera声明:在POJ上完成的习题将不会计入Coursera的最后成绩.) 注意: 总时间限制: 1000ms 内存限制: 65536kB 描述 在一个 ...

  7. 寻找真正的入口(OEP)--广义ESP定律

    1.前言 在论坛上看到很多朋友,不知道什么是ESP定律,ESP的适用范围是什么,ESP定律的原理是什么,如何使用ESP定律?看到了我在“”调查结果发现,大家对ESP定律很感兴趣,当然因为实在是太好用了 ...

  8. 菜鸟脱壳之脱壳的基础知识(三)——寻找OEP

    这节我们来讲讲如何寻找一个程序的OEP,即Original Entry Point.一些PE加壳程序在被加密的程序上面加了一个区段(有的壳也会合并区段),当外壳代码执行完毕以后,会跳到程序的本身的代码 ...

  9. Python 爬虫入门(三)—— 寻找合适的爬取策略

    写爬虫之前,首先要明确爬取的数据.然后,思考从哪些地方可以获取这些数据.下面以一个实际案例来说明,怎么寻找一个好的爬虫策略.(代码仅供学习交流,切勿用作商业或其他有害行为) 1).方式一:直接爬取网站 ...

随机推荐

  1. linux驱动编写之阻塞与非阻塞

    一.概念 应用程序使用API接口,如open.read等来最终操作驱动,有两种结果--成功和失败.成功,很好处理,直接返回想要的结果:但是,失败,是继续等待,还是返回失败类型呢?  如果继续等待,将进 ...

  2. MySql 数据库移植记录

    在使用长文本时,SqlServer 在以下情况下工作正常 [Property("CContent", ColumnType = "StringClob", Le ...

  3. WPF-利用Blend写的平面控制闸门开关动画

    原文:WPF-利用Blend写的平面控制闸门开关动画 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/yangyisen0713/article/de ...

  4. 关于node.js的进程管理

    如果是单纯的运行一个node进程,那会比较简单,例如: node ./example.js 但是一般来说,当我们运行一个node进程之后,我们可能希望对这个进程进行更多的管理,例如,当node程序是一 ...

  5. 微服务之Sping Cloud

    版本说明 Finchley SR2 价值简要 微服务之间是松耦合,跨不同业务部门,提供非常充分的灵活性,加快项目开发完成效率,方便组件化独立可扩展性及复用. 微服务应用结构表现 组件简要 1. Eur ...

  6. 【下一代核心技术DevOps】:(四)私有镜像库阿里云Docker服务使用

    1.使用阿里云镜像库有很多优点 稳定可靠,阿里技术,放心使用. 国内cdn多节点加速,下载速度非常快 可以和阿里云Git代码集成,不需要第三方CI工具,当然带的自动构建服务也可以和其他的Git库集成, ...

  7. 使用阿里云cli管理安全组

    相比于python SDK方式,阿里云基于GO SDK开发了一整套CLI工具,可以通过调用RPC API来管理云资源,对编程能力不够的人来说是个福音. 而且,阿里云CLI的文档比SDK的文档更加全面, ...

  8. 利用Tarjan算法解决(LCA)二叉搜索树的最近公共祖先问题——数据结构

    相关知识:(来自百度百科)  LCA(Least Common Ancestors) 即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 例如: 1和7的最近公共祖先为5: 1和5的 ...

  9. 牛客训练赛25-A-因数个数

    题目链接https://www.nowcoder.com/acm/contest/158/A 无语...这题很迷啊,原谅我的菜,刚开始想用预处理欧拉筛和前缀和,可是这题太血崩了,这样一样要遍历,1-e ...

  10. Java实验二

    北京电子科技学院(BESTI) 实     验    报     告 课程:Java程序设计 班级:1351    姓名:黄君如  学号:20135117 成绩:             指导教师:娄 ...