Solution

  

  日常博弈论做不出来。

  

  首先,数值全部为1的局面先手必败。

  

  在接下来的过程中,我们只关注那些大于1的数值。

  

  按照官方题解的思路,首先想一个简化版的问题:没有除的操作,其余相同。那么局面结果显然和所有值的和的奇偶性有关。

  

  回到原问题。我们发现,当局面中有2个或更多奇数,其余为偶数时,我们对任意一个元素进行一次完整操作,仅仅会将一个元素从奇变偶,或从偶变奇。原因?只要有奇数存在,所有数的GCD必定是奇数。所以当全局除以GCD时,奇数还是奇数,偶数还是偶数,因为它们的2没有被除去。不论操作的是偶数还是奇数,都必定会留下至少一个奇数存在。因此变动也就只发生在操作的数上。暂且称之为A性质。

  

  如果先手手上全是奇数,那么必败。全1时显然必败。根据A,先手对任意数进行操作,将会出现一个偶数,那么后手可以把这个偶数变回奇数。如此反复,必定先手败。

  

  根据题目给的性质:初始时GCD为1。这意味着初始局面必定有1个或以上的奇数。

  

  接下来,对局面按偶数的个数分类:

  

  (1)有奇数个偶数:必胜。证明:先手先操作一个偶数,那么此时局面中有2+个奇数,以及偶数个偶数,符合A,则变化只发生在操作数上。如果后手操作一个偶数变奇数,那么先手再操作一个奇数变偶数;如果后手操作一个奇数变成偶数,那么先手可以再操作这个数变成奇数(既然后手能操作,那么操作前数肯定\(\ge 3\))。如此进行,某个时刻后手操作前将会有没有偶数,即全为奇数。我们已经证明此时先手必败。

  

  (2)有偶数个偶数:如果没有奇数,先手任意操作时,-1后出现一个奇数,大概理解为满足A,则都会使得后手有(1)的局面,即先手必败。如果有2+个奇数,此时满足A,先手任做一次操作,都会使后手有(1),先手必败。如果恰好有1个奇数,这时候我们无法推理什么,但是此时我们发现,如果先手操作某一个偶数,那么就直接输了,所以先手只有1种选择:操作那个奇数。于是问题就变成模拟了。我们递归处理,直到遇到上述情况位置。由于每次GCD至少是2,于是层数就是\(\mathcal O(\log)\)的。

  

  

  

  在这稍微总结一下:博弈论题一般是要发现一些逼迫方法,并从这些角度来考虑必胜策略。

  

  

  

Code

#include <cstdio>
#include <iostream>
using namespace std;
namespace IO{/*{{{*/
const int S=10000000;
char buf[S];
int pos;
void load(){
fread(buf,1,S,stdin);
pos=0;
}
char getChar(){
return buf[pos++];
}
int getInt(){
int x=0,f=1;
char c=getChar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getChar();}
while('0'<=c&&c<='9'){x=x*10+c-'0';c=getChar();}
return x*f;
}
}/*}}}*/
using IO::getInt;
const int N=100005;
int n;
int a[N];
void readData(){
n=getInt();
for(int i=1;i<=n;i++)
a[i]=getInt();
}
int gcd(int x,int y){
if(x<y) swap(x,y);
for(int z=x%y;z;x=y,y=z,z=x%y);
return y;
}
void simulate(int who){
static int sum[2],oddpos;
bool all1flag=true;
sum[0]=sum[1]=0;
for(int i=1;i<=n;i++)
if(a[i]!=1){
all1flag=false;
sum[a[i]&1]++;
if(a[i]&1)
oddpos=i;
}
if(all1flag)
throw who^1;
if(sum[0]&1)
throw who;
if(sum[1]>1)
throw who^1;
if(sum[1]==0)
throw who^1;
a[oddpos]--;
int g=-1;
for(int i=1;i<=n;i++)
if(a[i]!=1){
if(g==-1)
g=a[i];
else
g=gcd(g,a[i]);
}
for(int i=1;i<=n;i++)
if(a[i]!=1)
a[i]/=g;
simulate(who^1);
}
int main(){
IO::load();
readData();
try{
simulate(1);
}
catch(int e){
puts(e?"First":"Second");
}
return 0;
}

【AGC010D】Decrementing的更多相关文章

  1. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  2. 【原】谈谈对Objective-C中代理模式的误解

    [原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...

  3. 【原】FMDB源码阅读(三)

    [原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...

  4. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

  5. 【调侃】IOC前世今生

    前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...

  6. Python高手之路【三】python基础之函数

    基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...

  7. Python高手之路【一】初识python

    Python简介 1:Python的创始人 Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种解释型.面向对象.动态数据类型的高级程序设计语言,由荷兰人Guido ...

  8. 【开源】简单4步搞定QQ登录,无需什么代码功底【无语言界限】

    说17号发超简单的教程就17号,qq核审通过后就封装了这个,现在放出来~~ 这个是我封装的一个开源项目:https://github.com/dunitian/LoTQQLogin ————————— ...

  9. 【原】FMDB源码阅读(二)

    [原]FMDB源码阅读(二) 本文转载请注明出处 -- polobymulberry-博客园 1. 前言 上一篇只是简单地过了一下FMDB一个简单例子的基本流程,并没有涉及到FMDB的所有方方面面,比 ...

随机推荐

  1. 利用数据库触发器让字段与自增长Id相关联

    十年河东,十年河西,莫欺少年穷 学无止境,精益求精 今天是数据库脚本类的代码,所以不想过多阐述 如下数据表: create table Card( Id ,) primary key, CardNo ...

  2. 关于ajax的controller层返回jsp页面多个list

    @RequestMapping(value ="findFansChangeRate") @ResponseBody public AjaxJson findFansChangeR ...

  3. springboot 发送邮件+模板+附件

    package com.example.demo; import org.junit.Test;import org.junit.runner.RunWith;import org.springfra ...

  4. Dubbo(四) Dubbo-Admin项目 Dubbo管理台

    前言 在dubbo项目中,有注册中心,消费者,提供者就足以构成一个完整的项目了.但是仅仅有这三个角色,很难对整个项目状态有直观的了解,以及对项目操作. 因此早有前辈对此原因作出了贡献——一个通用的du ...

  5. kvm虚拟化关闭虚拟网卡virbr0的方法

    我们知道:kvm虚拟化环境安装好后,ifconfig会发现多了一个虚拟网卡virbr0这是由于安装和启用了libvirt服务后生成的,libvirt在服务器(host)上生成一个 virtual ne ...

  6. C_数据结构_递归A函数调用B函数

    # include <stdio.h> int g(int); int f(int); int f(int n) { ) printf("haha\n"); else ...

  7. Python-复习-文件操作-21

    # 文件处理 # 打开文件 #open('路径','打开方式','指定编码方式') # 打开方式 r w a r+ w+ a+ b #r+ 打开文件直接写 和读完再写 # 编码方式 —— utf-8 ...

  8. M2postmortem

    设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 答:我们的软件主要解决信息提取的问题.定义清晰:要提取的内容包括于计算机科学相关内容的标题.作者. ...

  9. 《Linux内核设计与实现》 第八周读书笔记 第四章 进程调度

    20135307 张嘉琪 第八周读书笔记 第四章 进程调度 调度程序负责决定将哪个进程投入运行,何时运行以及运行多长时间,进程调度程序可看做在可运行态进程之间分配有限的处理器时间资源的内核子系统.只有 ...

  10. Sprint会议计划

    经过饭后的宿舍激烈会议之后...... 1.我们的MASTER是组员董大为 2.这次sprint的目标是四则运算系统 3.每天例会时间地点:每天晚饭后在宿舍 4.实现四则运算的基本功能前期已经完成得差 ...