题目戳我

一道模板题

自己尝试证明了大部分。。。

剩下的还是没太证出来。。。

所以就是一个模板放在这里

以后再来补东西吧。。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<complex>
#include<algorithm>
using namespace std;
#define MAX 2700000
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
const double Pi=acos(-1);
int N,M,r[MAX],l;
complex<double> a[MAX],b[MAX];
void FFT(complex<double> *P,int opt)
{
for(int i=0;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
{
complex<double> W(cos(Pi/i),opt*sin(Pi/i));
for(int p=i<<1,j=0;j<N;j+=p)
{
complex<double> w(1,0);
for(int k=0;k<i;k++,w*=W)
{
complex<double> X=P[j+k],Y=w*P[j+k+i];
P[j+k]=X+Y;P[j+k+i]=X-Y;
}
}
}
} int main()
{
N=read();M=read();
for(int i=0;i<=N;++i)a[i]=read();
for(int i=0;i<=M;++i)b[i]=read();
M+=N;
for(N=1;N<=M;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
FFT(a,1);
FFT(b,1);
for(int i=0;i<=N;++i)a[i]=a[i]*b[i];
FFT(a,-1);
for(int i=0;i<=M;++i)printf("%d ",(int)(a[i].real()/N+0.5));
return 0;
}

【Luogu3803】多项式乘法FFT(FFT)的更多相关文章

  1. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  2. 洛谷P3803 【模板】多项式乘法(FFT)

    P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...

  3. 洛谷 P3803 【模板】多项式乘法(FFT)

    题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...

  4. 【luogu P3803】【模板】多项式乘法(FFT)

    [模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...

  5. 多项式乘法,FFT与NTT

    多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b ...

  6. 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)

    题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...

  7. UVALive - 6886 Golf Bot 多项式乘法(FFT)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/129724 Golf Bot Time Limit: 15000MS 题意 给你n个数,m个查询,对于每个查询 ...

  8. 多项式乘法(FFT)模板 && 快速数论变换(NTT)

    具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DF ...

  9. Luogu3803 【模板】多项式乘法(FFT)

    为什么我这么弱 其实FFT也挺水的,一点数学基础加上细心即可.细节·技巧挺多. 递归 在TLE的边缘苦苦挣扎 #include <iostream> #include <cstdio ...

  10. 【UOJ 34】 多项式乘法 (FFT)

    [题意] 给你两个多项式,请输出乘起来后的多项式. 先打一个递归版本的模板... #include<cstdio> #include<iostream> #include< ...

随机推荐

  1. .NET Core 3.0 跟踪

    Preview1: https://blogs.msdn.microsoft.com/dotnet/2018/12/04/announcing-net-core-3-preview-1-and-ope ...

  2. R绘图 第十一篇:统计转换、位置调整、标度和向导(ggplot2)

    统计转换和位置调整是ggplot2包中的重要概念,统计转换通常使用stat参数来引用,位置调整通常使用position参数来引用. bin是分箱的意思,在统计学中,数据分箱是一种把多个连续值分割成多个 ...

  3. item 3: 理解decltype

    本文翻译自modern effective C++,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 decltype是一个奇怪的东西.给出一个名字或者一个表达式,de ...

  4. BugkuCTF web基础$_GET

    前言 写了这么久的web题,算是把它基础部分都刷完了一遍,以下的几天将持续更新BugkuCTF WEB部分的题解,为了不影响阅读,所以每道题的题解都以单独一篇文章的形式发表,感谢大家一直以来的支持和理 ...

  5. css3 动画效果实现

    前沿 在工作中,经常有一些需要切换的交互样式.如果直接在两种状态之间切换,就显得有点生硬.加上一些动画效果就会好很多. 示例1:点击的三角切换 实现过程 第一步实现这个三角形 用的svg 的多边形画法 ...

  6. 软工个人作业-博客作业-WEEK2

    1.是否需要代码规范:    (1)这些规范都是官僚制度下产生的浪费大家的编程时间.影响人们开发效率, 浪费时间的东西.        首先来说,从短期上和个体上来看,一个团队的代码风格必然会在一定程 ...

  7. #个人博客作业week2——关于代码规范的个人观点

    对于这一讨论的前提我们首先要知道什么是代码规范. 在这个问题上我同意一篇参考文章的观点——代码规范不仅只编码风格.编码风格仅是代码规范的一个方面,除了编码风格,代码规范还包括函数返回值等其他方面.在我 ...

  8. SuperMaze(Hello World 团队)Alpha版使用说明

    一.产品介绍 超级迷宫是一款android的手机游戏,目前我们已经在PC 端成功实现大体功能,虽然虽然迷宫游戏不少但我们的游戏渐渐的会假如自己的特色功能,尽量吸引用户,通过游戏开发智力,通过游戏打发无 ...

  9. 注解Annotation

    @java.lang.annotation.Target(value={java.lang.annotation.ElementType.TYPE}) @java.lang.annotation.Re ...

  10. vue 路由传参 params 与 query两种方式的区别

    初学vue的时候,不知道如何在方法中跳转界面并传参,百度过后,了解到两种方式,params 与 query.然后,错误就这么来了:  router文件下index.js里面,是这么定义路由的: { p ...