Problem 2105 Digits Count

Accept: 302 Submit: 1477

Time Limit: 10000 mSec Memory Limit : 262144 KB

Problem Description

Given N integers A={A[0],A[1],…,A[N-1]}. Here we have some operations:

Operation 1: AND opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] AND opn (here “AND” is bitwise operation).

Operation 2: OR opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] OR opn (here “OR” is bitwise operation).

Operation 3: XOR opn L R

Here opn, L and R are integers.

For L≤i≤R, we do A[i]=A[i] XOR opn (here “XOR” is bitwise operation).

Operation 4: SUM L R

We want to know the result of A[L]+A[L+1]+…+A[R].

Now can you solve this easy problem?

Input

The first line of the input contains an integer T, indicating the number of test cases. (T≤100)

Then T cases, for any case, the first line has two integers n and m (1≤n≤1,000,000, 1≤m≤100,000), indicating the number of elements in A and the number of operations.

Then one line follows n integers A[0], A[1], …, A[n-1] (0≤A[i]<16,0≤in).

Then m lines, each line must be one of the 4 operations above. (0≤opn≤15)

Output

For each test case and for each “SUM” operation, please output the result with a single line.

Sample Input

1

4 4

1 2 4 7

SUM 0 2

XOR 5 0 0

OR 6 0 3

SUM 0 2

Sample Output

7

18

Hint

A = [1 2 4 7]

SUM 0 2, result=1+2+4=7;

XOR 5 0 0, A=[4 2 4 7];

OR 6 0 3, A=[6 6 6 7];

SUM 0 2, result=6+6+6=18.

由于数据特别多,但是数据的值不大(<16),所以必有大量重复的元素就可以进行区间合并

#include <set>
#include <map>
#include <list>
#include <stack>
#include <cmath>
#include <vector>
#include <queue>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define PI cos(-1.0)
#define RR freopen("input.txt","r",stdin)
using namespace std;
typedef long long LL;
const int MAX = 1000010;
int Seg[MAX*6];
int Arr[MAX];
int n,m;
int Oper(int num,int PN,int OP)//进行操作
{
switch(OP)
{
case 1:
return num&PN;
case 2:
return num|PN;
case 3:
return num^PN;
}
return 0;
} void Build(int L,int R,int site)//建立线段树
{
if(L==R)
{
Seg[site]=Arr[L];
return ;
}
int mid=(L+R)>>1;
Build(L,mid,site<<1);
Build(mid+1,R,site<<1|1);
if(Seg[site<<1]==Seg[site<<1|1]&&Seg[site<<1]!=1)//将值相同的区间进行合并,如果不相同则为-1.
{
Seg[site]=Seg[site<<1];
}
else
{
Seg[site]=-1;
}
}
void Update(int L,int R,int l,int r,int site,int PN,int OP)//更新操作
{
if(L==l&&R==r&&Seg[site]!=-1)//三种操作
{
Seg[site]=Oper(Seg[site],PN,OP);
return ;
}
int mid = (L+R)>>1;
if(Seg[site]!=-1)//向下更新,如过对已经合并的区间里面进行操作,则需要将区间先拆分,更行完以后再判断是否可以合并
{
Seg[site<<1]=Seg[site<<1|1]=Seg[site];
Seg[site]=-1;
}
if(r<=mid)
{
Update(L,mid,l,r,site<<1,PN,OP);
}
else if(l>mid)
{
Update(mid+1,R,l,r,site<<1|1,PN,OP);
}
else
{
Update(L,mid,l,mid,site<<1,PN,OP);
Update(mid+1,R,mid+1,r,site<<1|1,PN,OP);
}
if(Seg[site<<1]==Seg[site<<1|1]&&Seg[site<<1]!=1)//区间合并
{
Seg[site]=Seg[site<<1];
}
}
int Query(int L,int R,int l,int r,int site)//查询
{
if(L==l&&R==r&&Seg[site]!=-1)
{
return (R-L+1)*Seg[site];
}
if(Seg[site]!=-1)//查询的时候,如果要查询一个区间内的区间,则需要先将区间向下更新(想想为什么?);
{
Seg[site<<1]=Seg[site<<1|1]=Seg[site];
Seg[site]=-1;
}
int mid=(L+R)>>1;
if(r<=mid)
{
return Query(L,mid,l,r,site<<1);
}
else if(l>mid)
{
return Query(mid+1,R,l,r,site<<1|1);
}
else
{
return Query(L,mid,l,mid,site<<1)+Query(mid+1,R,mid+1,r,site<<1|1);
}
}
int main()
{
int T;
char str[15];
int l,r,PN;
scanf("%d",&T);
while(T--)
{
scanf("%d %d",&n,&m);
for(int i=0;i<n;i++)
{
scanf("%d",&Arr[i]);
}
Build(0,n-1,1);
for(int i=1;i<=m;i++)
{
scanf("%s",str);
if(strcmp(str,"SUM")==0)
{
scanf("%d %d",&l,&r);
printf("%d\n",Query(0,n-1,l,r,1));
}
else
{
scanf("%d %d %d",&PN,&l,&r);
if(strcmp(str,"AND")==0)
{
Update(0,n-1,l,r,1,PN,1);
}
else if(strcmp(str,"OR")==0)
{
Update(0,n-1,l,r,1,PN,2);
}
else if(strcmp(str,"XOR")==0)
{
Update(0,n-1,l,r,1,PN,3);
}
}
}
}
return 0;
}

FZU 2105 Digits Count(线段树)的更多相关文章

  1. fzu 2105 Digits Count ( 线段树 ) from 第三届福建省大学生程序设计竞赛

    http://acm.fzu.edu.cn/problem.php?pid=2105 Problem Description Given N integers A={A[0],A[1],...,A[N ...

  2. ACM: FZU 2105 Digits Count - 位运算的线段树【黑科技福利】

     FZU 2105  Digits Count Time Limit:10000MS     Memory Limit:262144KB     64bit IO Format:%I64d & ...

  3. FZU 2105 Digits Count

     Problem 2105 Digits Count Accept: 444    Submit: 2139 Time Limit: 10000 mSec    Memory Limit : 2621 ...

  4. FZU 2105 Digits Count(按位维护线段树)

    [题目链接] http://acm.fzu.edu.cn/problem.php?pid=2105 [题目大意] 给出一个序列,数字均小于16,为正数,每次区间操作可以使得 1. [l,r]区间and ...

  5. FZU 2105 Digits Count(位数计算)

    Description 题目描述 Given N integers A={A[0],A[1],...,A[N-1]}. Here we have some operations: Operation ...

  6. HDU 6155 Subsequence Count 线段树维护矩阵

    Subsequence Count Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 256000/256000 K (Java/Oth ...

  7. FOJ 2105 Digits Count

    题意:对一串数字进行抑或某数,和某数,或某数,统计某区间和的操作. 思路:因为化成二进制就4位可以建4颗线段树,每颗代表一位二进制. and 如果该为是1  直接无视,是0则成段赋值为0: or  如 ...

  8. [HDU6155]Subsequence Count(线段树+矩阵)

    DP式很容易得到,发现是线性递推形式,于是可以矩阵加速.又由于是区间形式,所以用线段树维护. https://www.cnblogs.com/Miracevin/p/9124511.html 关键在于 ...

  9. FZU 2105Digits Count(线段树 + 成段更新)

    Description Given N integers A={A[0],A[1],...,A[N-1]}. Here we have some operations: Operation 1: AN ...

随机推荐

  1. 学习OpenCV——粒子滤波(网上两篇文章总结)

    粒子滤波的理论实在是太美妙了,用一组不同权重的随机状态来逼近复杂的概率密度函数.其再非线性.非高斯系统中具有优良的特性.opencv给出了一个实现,但是没有给出范例,学习过程中发现网络上也找不到.le ...

  2. Moment.js学习(一)源代码

    本篇主要是学习Moment.js.类库源代码如下: 2.4版本. //! moment.js //! version : 2.4.0 //! authors : Tim Wood, Iskren Ch ...

  3. (转)@SuppressWarnings的使用、作用、用法

    在java编译过程中会出现很多警告,有很多是安全的,但是每次编译有很多警告影响我们对error的过滤和修改,我们可以在代码中加上 @SuppressWarnings(“XXXX”) 来解决 例如:@S ...

  4. poj: 2739

    挺简单,生成素数表之后建个全素数的vector,然后..随便玩咯 #include <iostream> #include <stdio.h> #include <str ...

  5. Maven打jar包

    <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactI ...

  6. Testcase篇

    1: forever @(); 等待,c触发event. forever @(`SOC_TESTBENCH_NAME.vt_event1);在整个case的执行过程中,只要.c触发event1,就执行 ...

  7. linux中查看硬件温度的命令

    用到的命令是: sensors 这个命令来自一个叫 lm_sensors 的包. 执行 sensors-detect 可以以询问的方式做一些配置(可以选择检测哪些硬件的温度).

  8. 由ccf第一题引出的问题

    当时的情况是这样的,代码中需要用到一个较大的二维数组,但只要定义这个大二维数组编译就出错,无奈后来用malloc自己实现了类似二维数组的操作. 其中的b数组设为全局的或者静态的也都可以解决overfl ...

  9. zw版【转发·台湾nvp系列Delphi例程】HALCON SelectObj

    zw版[转发·台湾nvp系列Delphi例程]HALCON SelectObj procedure TForm1.Button1Click(Sender: TObject);var img : HIm ...

  10. Inside TSQL Querying - Chapter 2. Physical Query Processing

    Summary Description The SQL language is spoken by most database experts, and all relational database ...