【数位统计】之【spoj1433 KPSUM】
【spoj1433】KPSUM
来源
高逸涵《数位计数问题解法研究》
由于自己的数位计数类的问题实在太差了,所以把例2用markdown抄写并补充了一遍。
题意
将写在纸上,然后在相邻的数字间交替插入“+”和“-”,求最后的结果。例如当时,答案为:
分析
这是一道稍微复杂一点的数位计数问题。
我们首先探查数位确定,所有数字自由的情况。
不妨设第一位从”+”开始。
若数位个数为偶数,以6位为例:
| +0 | -0 | +0 | -0 | +0 | -0 |
| +0 | -0 | +0 | -0 | +0 | -1 |
| +0 | -0 | +0 | -0 | +0 | -2 |
| … | … | … | … | … | … |
| +9 | -9 | +9 | -9 | +9 | -9 |
发现:
①每个数位的符号相同,奇数符号的数位和偶数符号的数位个数相等。
②每个数位中每个数出现的次数相同。
所有数位的所有数的和为0。
若数位个数为奇数,以5位为例:
| +0 | -0 | +0 | -0 | +0 |
| -0 | +0 | -0 | +0 | -1 |
| +0 | -0 | +0 | -0 | +2 |
| -0 | +0 | -0 | +0 | -3 |
| … | … | … | … | … |
| +9 | -9 | +9 | -9 | +8 |
| -9 | +9 | -9 | +9 | -9 |
相邻两行的和为-1。
之前我们这样认定:
不妨设第一位从”+”开始。
然而第一位不一定是+,这跟总位数有关。
注意:当前我们考虑的只是后面位对答案的贡献,前缀对答案的贡献并没有计算。
(1)当为偶数时
①当为偶数时,后面位数的贡献为0;
②当为奇数时,从第位开始贡献为0,所以我们只需要考虑第位的贡献。
第位的全是负号,贡献为:
(2)当为奇数时,相邻两行和为-1,总共有个数,所以有行,所以贡献为:
于是我们写出函数GetSum1。
LL GetSum1(int n,int k)
//n为自由位个数,k为总位数
{
if (k%2==0)
{
if (n%2==0) return 0;
else
{
LL d=-45;
rep(i,1,n-1) d*=10;
return d;
}
}
else
{
LL d=-1;
rep(i,1,n) d*=10;
return d/2;
}
}
接下来,考虑带前缀的情况。总位数=前缀位+自由位。
(1)当总位数为偶数时,前缀符号不变,乘上总行数即可。
(2)当总位数为奇数时,前缀两两相消。
依照以上分析编写GetSum2。
LL GetSum2(LL prefix,int n)
//prefix为前缀,n为自由位个数
{
int d=0,t=1;
LL p=prefix,presum=0;
while (p>0)
{
presum+=(p%10)*t;
p/=10;
d++;
t=-t;
}
presum*=-t;
rep(i,1,n) presum*=10;
LL ret=GetSum1(n,n+d);
if ((d+n)%2==0) ret+=presum;
return ret;
}
沿用上例的思路,,再有了上述两个函数之后,我们继续将整个区间划分为若干段,分别利用上述函数求和,这里不再重复叙述。
小结
通过对问题从简单到复杂的层层递进分析,逐步将程序实现,使得一个原本比较复杂的问题轻松被解决。程序编写过程中思路明确,程序模块化合理,每个模块功能明确,并且单独可以通过check函数进行检验。使得出错的可能性大大降低。
虽然整体代码量有所增加,但由于思考的时间减少,代码编写时间甚至还会缩短。
【数位统计】之【spoj1433 KPSUM】的更多相关文章
- Codeforces 55D Beautiful Number (数位统计)
把数位dp写成记忆化搜索的形式,方法很赞,代码量少了很多. 下面为转载内容: a positive integer number is beautiful if and only if it is ...
- [ACM] ural 1057 Amount of degrees (数位统计)
1057. Amount of Degrees Time limit: 1.0 second Memory limit: 64 MB Create a code to determine the am ...
- 动态规划——区间DP,计数类DP,数位统计DP
本博客部分内容参考:<算法竞赛进阶指南> 一.区间DP 划重点: 以前所学过的线性DP一般从初始状态开始,沿着阶段的扩张向某个方向递推,直至计算出目标状态. 区间DP也属于线性DP的一种, ...
- BZOJ 1236: SPOJ1433 KPSUM
Description 用+-号连接1-n所有数字的数位,问结果是多少. Sol 数位DP. \(f[i][j][0/1][0/1]\) 表示长度为 \(i\) 的数字,开头数字是 \(j\) ,是否 ...
- 数位DP:SPOJ KPSUM - The Sum
KPSUM - The Sum One of your friends wrote numbers 1, 2, 3, ..., N on the sheet of paper. After that ...
- 0x5C 数位统计DP
怎么说,数位DP还是我的噩梦啊,细节太恐怖了. 但是这章感觉又和之前的学的数位DP有差异?(应该是用DP预处理降低时间复杂度,好劲啊,不过以前都是记忆化搜索的应该不会差多少) poj3208 f[i] ...
- 紫书 例题 10-22 UVa 1640(数位统计)
这道题的题解有几个亮点 一个是每次只统计一个数字来简化思维 一个是统计当前位数的时候分三个部分来更新答案 具体看代码,有注释 #include<cstdio> #include<cs ...
- $BZOJ1799\ Luogu4127$ 月之谜 数位统计$DP$
AcWing Description Sol 看了很久也没有完全理解直接$DP$的做法,然后发现了记搜的做法,觉得好棒! 这里是超棒的数位$DP$的记搜做法总结 看完仿佛就觉得自己入门了,但是就像 ...
- $Poj3208$ 启示录 数位统计$DP$
Poj AcWing Description Sol 这题长得就比较像数位$DP$叭. 所以先用$DP$进行预处理,再基于拼凑思想,通过"试填法"求出最终的答案. 设$F[i] ...
随机推荐
- dg_MeetingRoom 居中显示
标题栏 居中 DataGridViewCellStyle headerStyle = new DataGridViewCellStyle(); //dg_MeetingRoom 头居中样式 heade ...
- ContentProvider官方教程(5)ContentResolver插入、更新、删除 示例
Inserting, Updating, and Deleting Data In the same way that you retrieve data from a provider, you a ...
- centos7 安装 mariadb 的正确命令
使用的是linode的centos7系统,安装mysql发现已经默认的是mariadb. 但是不管是使用linode官网说明还是百度搜索到的的根本安装方法无法安装成功. 总是提示这一句: ERROR ...
- BZOJ 3532: [Sdoi2014]Lis (最大流)
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3532 题意:给出三个数列ABC,长度均为n.删除A中的某些数字,使得A的最长上升子 ...
- Eclipse / android studio 添加第三方jar包 步骤
eclipse 将第三方包放到libs文件夹后并没有引用. 基本步骤分为3步,具体介绍如下: 打开自己的Eclipse,在自己的Android工程上名上右键->Build Path ->C ...
- 对 strcpy_s 若干测试
今天发现如果strcpy这函数,目标buffer太小,会有意想不到的崩溃.而且不容易调试.以后尽量要用strcpy_s了. strcpy_s是strcpy的更安全的版本 1.当目标字符串参数是一个字符 ...
- Dev gridview新增一行自动获得焦点并打开编辑模式
1.gridview添加一行自动获得焦点实现方式: 关键代码: GarsonZhang dt.Rows.Add("1", "2"); gridView1.Foc ...
- VIM如何将全部内容复制并粘贴到外部
ubuntu默认安装的vim是不支持系统剪切.粘贴版的,需要执行以下安装:sudo apt-get install vim-gnome 注意要让vim支持系统粘贴板,首先执行sudo apt-get ...
- 通过NuGet获取sqlite对应的.net的dll
https://www.nuget.org/packages/System.Data.SQLite/ 直接在Package Manager Console中执行命令,会自动安装依赖项的 Install ...
- [C程序设计语言]第五部分
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...