本文将主要介绍图像分类问题,即给定一张图片,我们来给这张图片打一个标签,标签来自于预先设定的集合,比如{people,cat,dog...}等,这是CV的核心问题,图像分类在实际应用中也有许多变形,而且许多看似无关的问题(比如 object detection, segmentation)最终也可划分为图像分类问题。

彩色图像通常有RGB三个通道,每个通道都是一个二维数组,比如下图即为一张200*150的图像,该图像分为RGB三个通道,所以该图像可用200*150*3 = 90000的一维数组表示,数组每个点的取值为0(黑色)到255(白色)。图像分类即将这个90000维的数组打上标签,比如 dog。

目前图像识别面临的挑战有:

  • Viewpoint variation.   视角的变化
  • Scale variation.  大小缩放
  • Deformation.   一些物体可以随意变形,比如人伸展
  • Occlusion.   目标只有一小部分出现在图像里
  • Illumination conditions. 光线的变化
  • Background clutter. 背景干扰
  • Intra-class variation. 类内的差异,比如各种鸟类大小不一,颜色不一

图像分类的方法,目前主要是机器学习中的监督学习的方法,给定训练数据 {x(i),y(i)} 来训练一个分类器来进行分类,比如KNN算法

KNN算法中有超参数(hyperparameters )需要选个K的取值以及距离的度量(L1还是L2 距离),所以需要对数据进行划分,分别训练集与测试集,这里的测试集是十分宝贵的,用来测试模型的泛化性,而我们又要训练一个准确的模型,这时可以把训练数据进一步切分来进行Cross-validation.以下便是5折交叉验证,通过交叉验证的方法找到最优的模型,进而用测试集来测试模型的泛化能力。

KNN是非常慢的,因为每一次预测都要计算与训练数据集中所有图像的距离,找出 top k,实践KNN时需要注意一下几个问题:

1)预处理数据为0均值与单位方差(图像数据各个维度通常方差与均值都相等,因为像素介于0-255,所以图像可以省去此步骤)

2)高维数据可用PCA

3)若有很多参数,要保证测试集数据足够多,训练数据少得话就交叉验证之,交叉验证的  fold 越多,计算复杂度越高。

4)交叉验证时比如以上的图分了5折,其中用fold1 fold2 fold3 fold5 来训练,fold4 测试得到了最好的模型,这时在测试集测试时,可以不用fold4,把fold4当成burden扔掉。

计算机视觉入门 Intorduction To Computer Vision的更多相关文章

  1. Intorduction To Computer Vision

    本文将主要介绍图像分类问题,即给定一张图片,我们来给这张图片打一个标签,标签来自于预先设定的集合,比如{people,cat,dog...}等,这是CV的核心问题,图像分类在实际应用中也有许多变形,而 ...

  2. 计算机视觉中的边缘检测Edge Detection in Computer Vision

    计算机视觉中的边缘检测   边缘检测是计算机视觉中最重要的概念之一.这是一个很直观的概念,在一个图像上运行图像检测应该只输出边缘,与素描比较相似.我的目标不仅是清晰地解释边缘检测是怎样工作的,同时也提 ...

  3. AI-Azure上的认知服务之Computer Vision(计算机视觉)

    使用 Azure 的计算机视觉服务,开发人员可以访问用于处理图像并返回信息的高级算法. 主要包含如下高级算法: 标记视觉特性Tag visual features 检测对象Detect objects ...

  4. 如何创建Azure Face API和计算机视觉Computer Vision API

    在人工智能技术飞速发展的当前,利用技术手段实现人脸识别.图片识别已经不是什么难事.目前,百度.微软等云计算厂商均推出了人脸识别和计算机视觉的API,其优势在于不需要搭建本地环境,只需要通过网络交互,就 ...

  5. paper 156:专家主页汇总-计算机视觉-computer vision

    持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...

  6. 【29】带你了解计算机视觉(Computer vision)

    计算机视觉(Computer vision) 计算机视觉是一个飞速发展的一个领域,这多亏了深度学习. 深度学习与计算机视觉可以帮助汽车,查明周围的行人和汽车,并帮助汽车避开它们. 还使得人脸识别技术变 ...

  7. 计算机视觉和人工智能的状态:我们已经走得很远了 The state of Computer Vision and AI: we are really, really far away.

    The picture above is funny. But for me it is also one of those examples that make me sad about the o ...

  8. Computer vision labs

    积累记录一些视觉实验室,方便查找 1.  多伦多大学计算机科学系 2.  普林斯顿大学计算机视觉和机器人实验室 3.  牛津大学Torr Vision Group 4.  伯克利视觉和学习中心 Pro ...

  9. Graph Cut and Its Application in Computer Vision

    Graph Cut and Its Application in Computer Vision 原文出处: http://lincccc.blogspot.tw/2011/04/graph-cut- ...

随机推荐

  1. 【蛙蛙推荐】Lucene.net试用

    [蛙蛙推荐]Lucene.net试用   [简介] lucene.net好多人都知道的吧,反正我是最近才好好的看了一下,别笑我拿历史当新闻哦,不太了解Lucence的朋友先听我说两句哦.Lucene的 ...

  2. 知问前端——对话框UI(一)

    对话框(dialog),是jQuery UI非常重要的一个功能.它彻底的代替了JavaScript的alert().prompt()等方法,也避免了新窗口或页面的繁杂冗余. 开启多个dialog 我们 ...

  3. android-non-ui-ui-thread-communications-part-5-5

    This is the last post in my series regarding Android thread communications.  Parts 1 through 4 are l ...

  4. GetWindowText和GetDlgItemText的区别

    二者使用方法相同,入口点不一样. 举例: CString str;  /* if (GetDlgItem(IDC_Number1)->GetWindowText(str),str==" ...

  5. P2P通信标准协议(一)之STUN

    前一段时间在P2P通信原理与实现中介绍了P2P打洞的基本原理和方法,我们可以根据其原理为自己的网络程序设计一套通信规则, 当然如果这套程序只有自己在使用是没什么问题的.可是在现实生活中,我们的程序往往 ...

  6. 控制台console输出信息原理理解

    Eclipse控制台输出信息的控制 标签: Eclipse控制台输出信息 2015-01-02 14:11 22454人阅读 评论(1) 收藏 举报  分类: Some Tips(15)  版权声明: ...

  7. ssh2框架搭建

    原文:ssh2框架搭建 struts2+spring4.0+hibernate4.0 4.x版本与3.x版本有较大区别,要配置方法须要注意,用到的jar包如下 文件结构 src/application ...

  8. TCP建立连接的三次握手过程

    TCP是因特网中的传输层协议,使用三次握手协议建立连接,下面是TCP建立连接的全过程. 上图画出了TCP建立连接的过程.假定主机A运行的是TCP客户程序,B运行的是TCP服务器程序.最初两端的TCP进 ...

  9. 305. Number of Islands II

    题目: A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand  ...

  10. android 从服务器上获取APK下载安装

    简单的为新手做个分享.  网上有些资料,不过都是很零散,或是很乱的,有的人说看不懂. 一直有新手说 做到服务器更新APK时没有思路,这里做个简单的分享,希望有不同思路的可以讨论.  下面做个很简单的读 ...