题目:

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).


The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12

Note:

  1. You may assume that the matrix does not change.
  2. There are many calls to sumRegion function.
  3. You may assume that row1 ≤ row2 and col1 ≤ col2.

链接: http://leetcode.com/problems/range-sum-query-2d-immutable/

题解:

二维矩阵求Range Sum。这题我们也是用DP,不过dp的方法是: dp[i][j]等于从坐标matrix[0][0]到matrix[i - 1][j - 1]中所有元素的和。 这样我们就可以用中小学时计算矩形重叠面积的方法来计算出我们想要的结果。

Time Complexity - O(n2), Space Complexity - O(n2)。

public class NumMatrix {
private int[][] sum;
public NumMatrix(int[][] matrix) {
if(matrix == null || matrix.length == 0) {
return;
}
int rowNum = matrix.length, colNum = matrix[0].length;
sum = new int[rowNum + 1][colNum + 1]; for(int i = 1; i < sum.length; i++) {
for(int j = 1; j < sum[0].length; j++) {
sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + matrix[i - 1][j - 1];
}
}
} public int sumRegion(int row1, int col1, int row2, int col2) {
return sum[row2 + 1][col2 + 1] - sum[row1][col2 + 1] - sum[row2 + 1][col1] + sum[row1][col1];
}
} // Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix = new NumMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.sumRegion(1, 2, 3, 4);

Reference:

https://leetcode.com/discuss/69047/clean-and-easy-to-understand-java-solution

https://leetcode.com/discuss/69424/clean-c-solution-and-explaination-o-mn-space-with-o-1-time

https://leetcode.com/discuss/69144/c-with-helper

https://leetcode.com/discuss/69054/dp-java-solution

https://leetcode.com/discuss/69045/sharing-my-python-solution

https://leetcode.com/discuss/71297/my-java-solution-only-used-6-ms

https://leetcode.com/discuss/69611/share-my-short-java-solution

https://leetcode.com/discuss/69435/my-c-solution-o-n-2-setup-o-1-sumregion

https://leetcode.com/discuss/69141/range-sum-query-2d-mutable-c-tree-array

https://leetcode.com/discuss/69137/short-python-solution-exactly-same-that-solves-range-query

https://leetcode.com/discuss/69117/c-solution-o-1-for-sumregion-function

304. Range Sum Query 2D - Immutable的更多相关文章

  1. 【刷题-LeetCode】304. Range Sum Query 2D - Immutable

    Range Sum Query 2D - Immutable Given a 2D matrix matrix, find the sum of the elements inside the rec ...

  2. [LeetCode] 304. Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  3. 【LeetCode】304. Range Sum Query 2D - Immutable 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 预先求和 相似题目 参考资料 日期 题目地址:htt ...

  4. [leetcode]304. Range Sum Query 2D - Immutable二维区间求和 - 不变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  5. 304. Range Sum Query 2D - Immutable(动态规划)

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  6. leetcode 304. Range Sum Query 2D - Immutable(递推)

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  7. LeetCode 304. Range Sum Query 2D – Immutable

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  8. LeetCode 304. Range Sum Query 2D - Immutable 二维区域和检索 - 矩阵不可变(C++/Java)

    题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...

  9. 304 Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2). 上图子矩阵左上角 (row1, col1) = (2, 1) ,右 ...

随机推荐

  1. M1事后分析报告(Postmortem Report)

    M1事后分析报告(Postmortem Report) 设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们项目组所开发的软件为一个基于Andro ...

  2. 在Eclipse中怎样写Java注释

    java中的注释分为实现注释和文档注释 实现注释就是那些/……../和//……的注释,是注释程序用的,文档注释是/*……./的注释,是用来生成javadoc的.设置方法如下: 1.打开Eclipse的 ...

  3. IT服务系统组成

    软件+硬件+数据 + 运维人员 = IT服务系统 车 司机 乘客 修车 = 车模式 效率 系统 用户 业务 运维 = 信息化 效率 如果司机不会开车,没有人会修车就不会有车轮上的世界 同样没有人会运维 ...

  4. MySQL - 定时备份

    创建备份目录,在这里以/root/bak/mysql为例: cd mkdir bak cd bak mkdir mysql 在/usr/sbin下touch一个sh: cd /usr/sbin tou ...

  5. Netsharp产品标识自定义设置:产品名称、版权、LOGO等

    阅读本文请先阅读Netsharp下载及环境搭建 Netsharp本身是一个业务基础平台,Netsharp本身基础上开发的业务产品对客户才有价值,客户看到的产品应该不是Netsharp而是具体的业务产品 ...

  6. Angular 2 Quickstart

    写一个Angular 2的应用最基本的步骤概括为三步:写root组件,启动它(Boostrap),写index.html. 一些关于命名空间的基本知识 把所有代码放入一个立即调用函数中,通过传入一个空 ...

  7. JS 学习笔记--8---Function类型

    练习使用的浏览器IE11   JS 中Function类型实际上是一种对象,每一个函数实际上都是Function类型的一个实例,每一个函数都有一些默认的属性和方法.由于函数是对象,故函数名实际上也是一 ...

  8. 【BZOJ】【1492】【NOI207】货币兑换Cash

    DP/CDQ分治 orz Hzwer copy了下他的代码……结果在while(j<top......)这一句中把一个括号的位置打错了……找了我一个多小时才找到TAT 很神奇……顺便贴下CDQ的 ...

  9. centos6.5安装图形界面,windows远程linux图形界面

    1. 查询是否已安装图形界面 yum grouplist |more 在grouplist的输出结果中的“Installed Groups:”部分中,如果你能找到“X Window System”和G ...

  10. WARNING: Calls to any function that may require a gradient calculation inside a conditional block may return undefined results

    GLES2.0: Some device will give a warning on compling shaders(yet the compling will succeed), and the ...