题目:

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).


The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12

Note:

  1. You may assume that the matrix does not change.
  2. There are many calls to sumRegion function.
  3. You may assume that row1 ≤ row2 and col1 ≤ col2.

链接: http://leetcode.com/problems/range-sum-query-2d-immutable/

题解:

二维矩阵求Range Sum。这题我们也是用DP,不过dp的方法是: dp[i][j]等于从坐标matrix[0][0]到matrix[i - 1][j - 1]中所有元素的和。 这样我们就可以用中小学时计算矩形重叠面积的方法来计算出我们想要的结果。

Time Complexity - O(n2), Space Complexity - O(n2)。

public class NumMatrix {
private int[][] sum;
public NumMatrix(int[][] matrix) {
if(matrix == null || matrix.length == 0) {
return;
}
int rowNum = matrix.length, colNum = matrix[0].length;
sum = new int[rowNum + 1][colNum + 1]; for(int i = 1; i < sum.length; i++) {
for(int j = 1; j < sum[0].length; j++) {
sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + matrix[i - 1][j - 1];
}
}
} public int sumRegion(int row1, int col1, int row2, int col2) {
return sum[row2 + 1][col2 + 1] - sum[row1][col2 + 1] - sum[row2 + 1][col1] + sum[row1][col1];
}
} // Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix = new NumMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.sumRegion(1, 2, 3, 4);

Reference:

https://leetcode.com/discuss/69047/clean-and-easy-to-understand-java-solution

https://leetcode.com/discuss/69424/clean-c-solution-and-explaination-o-mn-space-with-o-1-time

https://leetcode.com/discuss/69144/c-with-helper

https://leetcode.com/discuss/69054/dp-java-solution

https://leetcode.com/discuss/69045/sharing-my-python-solution

https://leetcode.com/discuss/71297/my-java-solution-only-used-6-ms

https://leetcode.com/discuss/69611/share-my-short-java-solution

https://leetcode.com/discuss/69435/my-c-solution-o-n-2-setup-o-1-sumregion

https://leetcode.com/discuss/69141/range-sum-query-2d-mutable-c-tree-array

https://leetcode.com/discuss/69137/short-python-solution-exactly-same-that-solves-range-query

https://leetcode.com/discuss/69117/c-solution-o-1-for-sumregion-function

304. Range Sum Query 2D - Immutable的更多相关文章

  1. 【刷题-LeetCode】304. Range Sum Query 2D - Immutable

    Range Sum Query 2D - Immutable Given a 2D matrix matrix, find the sum of the elements inside the rec ...

  2. [LeetCode] 304. Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  3. 【LeetCode】304. Range Sum Query 2D - Immutable 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 预先求和 相似题目 参考资料 日期 题目地址:htt ...

  4. [leetcode]304. Range Sum Query 2D - Immutable二维区间求和 - 不变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  5. 304. Range Sum Query 2D - Immutable(动态规划)

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  6. leetcode 304. Range Sum Query 2D - Immutable(递推)

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  7. LeetCode 304. Range Sum Query 2D – Immutable

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  8. LeetCode 304. Range Sum Query 2D - Immutable 二维区域和检索 - 矩阵不可变(C++/Java)

    题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...

  9. 304 Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2). 上图子矩阵左上角 (row1, col1) = (2, 1) ,右 ...

随机推荐

  1. 格式化输出[parts/iomanip]

    /* 用ios类中的成员函数来进行IO格式的控制总需要写一条单独的语句,而不能直接嵌入到IO语句中,显得很不方便,因此C++又提供了一种用操作符来控制IO的格式.操作符分为带参和不带参两种,带参的定义 ...

  2. python 解析web接口的json数据

    实例1-使用urllib2 #utf-8 import urllib2 import json url="http://xxx.com" #获取json格式的字符串 page=ur ...

  3. 【BZOJ】【2038】小Z的袜子

    填个坑吧,学习了莫队算法.我也忘记是看的哪位大牛的博客&代码学习的了T_T,如果您发现了的话请私信我,我会注明学自您的代码. 另外感谢@PoPoQQQ大神 好,进入正文,莫队算法,也算是一种暴 ...

  4. 2014ACM/ICPC亚洲区西安站 复旦命题

    http://codeforces.com/gym/100548 A 签到 问一个序列是不是yes,yes的序列满足每个数都是3的倍数. #include<cstdio> int main ...

  5. [工作积累] Android dynamic library & JNI_OnLoad

    Bionic libc doesn't load dependencies for current .so file (diff from Windows or Linux) so a explici ...

  6. explicit构造函数的作用

    explicit构造函数是用来防止隐式转换的.请看下面的代码: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ...

  7. 【面试题041】和为s的两个数字VS和为s的连续正数序列

    [面试题041]和为s的两个数字VS和为s的连续正数序列 题目一:     输入一个递增排序的数组和一个数字s,在数组中查找两个数,使得它们的和正好是s.如果有多对数字的和等于s,输出任意一对即可. ...

  8. HDU 1671 Phone List(字符处理)

    题目 用字典树可以过,可是我写的字典树一直各种错误,,, 所以,我用了别的更简便的方法.. //去你妹的一直有问题的字典树!!! ////字典树,树的根是空的 // ////#include<i ...

  9. uva 10564

    Problem FPaths through the HourglassInput: Standard Input Output: Standard Output Time Limit: 2 Seco ...

  10. POJ 1607

    #include<iostream> #include<iomanip> using namespace std; int main() { //freopen("a ...