题意:有三个兵种R,G,C,选取N个排成一列,要求G至少有M个连续的,R至多有K个连续的,问有多少种排列方式。

此题与UVa 10328 - Coin Toss非常相似,都是问某个字符连续出现的种数。题中问至少连续的排列个数可以转化为至多连续来计算,但是难点在于这次需要算两个连续的兵种,而且有三个兵种。

试着从那个题的角度考虑,最终的答案可以是这样:N个士兵中,G至多连续N个、R至多连续K个的排列个数 减去 G至多连续M-1个、R至多连续K个的排列个数。

我们要考虑计算的时候G与R是否相互影响,这样需要分开表示。

设dp[i][j]表示前i个士兵,当第i个士兵是第j种兵(假设R:0,G:1,C:2)时,G至多连续u个、R至多连续v个的排列个数。

对于不作要求的C士兵,它可以由第i-1阶段的三种士兵任意转移:dp[i][2]=dp[i-1][0]+dp[i-1][1]+dp[i-1][2]。

对于G种兵,当i<=u时,无论怎么转移都不会出现非法状态:dp[i][0]=dp[i-1][0]+dp[i-1][1]+dp[i-1][2]。

当i==u+1,这个时候非法状态是从第1个位置到第u个位置全都是G,只有这一种情况,dp[i][0]=dp[i-1][0]+dp[i-1][1]+dp[i-1][2]-1。

当i>u+1,此时非法状态是从第i-u个位置到第u个位置全都是G,这种状态可以第i-u-1个位置是R和C的状态转移而来,dp[i][0]=dp[i-1][0]+dp[i-1][1]+dp[i-1][2]-dp[i-u-1][1]-dp[i-u-1][2]。

对于R种兵,与G种兵类似,当i<=v时,无论怎么转移都不会出现非法状态:dp[i][1]=dp[i-1][0]+dp[i-1][1]+dp[i-1][2]。

当i==v+1,这个时候非法状态是从第1个位置到第v个位置全都是R,只有这一种情况,dp[i][1]=dp[i-1][0]+dp[i-1][1]+dp[i-1][2]-1。

当i>v+1,此时非法状态是从第i-u个位置到第v个位置全都是R,这种状态可以第i-v-1个位置是G和C的状态转移而来,dp[i][1]=dp[i-1][0]+dp[i-1][1]+dp[i-1][2]-dp[i-v-1][0]-dp[i-v-1][2]。

初始化,dp[0][0]=1,dp[0][1]=dp[0][2]=0;

这样,我们令u分别等于N和m-1,v等于k,进行两次递推,得到的结果相减即是答案。

注意减法可能出现负数,取模的时候要特别处理一下。

 #include<iostream>
 #include<vector>
 #include<cmath>
 #include<cstdio>
 #define MOD 1000000007
 #define ll long long
 using namespace std;
 ll dp[][];
 int main()
 {
     int n,m,k;
     while(scanf("%d%d%d",&n,&m,&k)!=EOF)
     {
         dp[][]=;
         ; i<=n; ++i)
         {
             dp[i][]=dp[i][]=dp[i][]=;
             ; j<; ++j)
             {
                 dp[i][]+=dp[i-][j];
                 dp[i][]%=MOD;
                 dp[i][]+=dp[i-][j];
                 dp[i][]%=MOD;
                 dp[i][]+=dp[i-][j];
                 dp[i][]%=MOD;
             }
             ) dp[i][]=(dp[i][]-)%MOD;
             ]=(dp[i][]-dp[i-k-][]-dp[i-k-][]+*MOD)%MOD;
         }
         ll sum=(dp[n][]+dp[n][]+dp[n][])%MOD;
         m--;
         ; i<=n; ++i)
         {
             dp[i][]=dp[i][]=dp[i][]=;
             ; j<; ++j)
             {
                 dp[i][]+=dp[i-][j];
                 dp[i][]%=MOD;
                 dp[i][]+=dp[i-][j];
                 dp[i][]%=MOD;
                 dp[i][]+=dp[i-][j];
                 dp[i][]%=MOD;
             }
             ) dp[i][]=(dp[i][]-)%MOD;
             ]=(dp[i][]-dp[i-k-][]-dp[i-k-][]+*MOD)%MOD;
             ) dp[i][]=(dp[i][]-)%MOD;
             ]=(dp[i][]-dp[i-m-][]-dp[i-m-][]+*MOD)%MOD;
         }
         ll res=(dp[n][]+dp[n][]+dp[n][])%MOD;
         printf("%lld\n",((sum-res)%MOD+MOD)%MOD);
     }
     ;
 }

考虑一下这个题与UVa 10328 - Coin Toss的异同。

在表示状态的时候,本题更加细致。在上个题中,减去非法状态时,需要得到某个以F为最后位置的状态,这个状态可以由上个阶段(不需考虑F或H)直接*2转移而来。

本题中,减去非法状态需要得到某个以非G为最后位置的状态,不同于上个题中除了H就是F,这个题有三种兵,虽然以C为尾容易转移得到,但以R为尾的却不能直接从上阶段转移过来。所以在状态中直接保存。

ZOJ 3747 - Attack on Titans (递推)的更多相关文章

  1. ZOJ 3747 Attack on Titans

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3747 题意: 现在有n个士兵进行排序,只有G.R.P三种士兵,要求至少有m ...

  2. LA 3516(ZOJ 2641) Exploring Pyramids(递推 DP)

    Exploring Pyramids Archaeologists have discovered a new set of hidden caves in one of the Egyptian p ...

  3. ACM学习历程—ZOJ 3777 Problem Arrangement(递推 && 状压)

    Description The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem sett ...

  4. 递推DP(至少和至多之间的转换

    UVa 10328 - Coin Toss 题意:给你一个硬币,抛掷n次,问出现连续至少k个正面向上的情况有多少种. 转换成抛N次至多连续有N个减去抛N次至多连续有K-1个1的情况 dp[i][k]表 ...

  5. zoj 3747 递推dp

    Attack on Titans Time Limit: 2 Seconds      Memory Limit: 65536 KB Over centuries ago, mankind faced ...

  6. attack on titans(动态规划递推,限制条件,至少转至多方法,进击的巨人)

    题目意思: 给n个士兵排队,每个士兵三种G.R.P可选,求至少有m个连续G士兵,最多有k个连续R士兵的排列的种数. 原题 Attack on Titans Time Limit: 2 Seconds ...

  7. ZOJ 3690 &amp; HDU 3658 (矩阵高速幂+公式递推)

    ZOJ 3690 题意: 有n个人和m个数和一个k,如今每一个人能够选择一个数.假设相邻的两个人选择同样的数.那么这个数要大于k 求选择方案数. 思路: 打表推了非常久的公式都没推出来什么可行解,好不 ...

  8. ZOJ 3182 HDU 2842递推

    ZOJ 3182 Nine Interlinks 题目大意:把一些带标号的环套到棍子上,标号为1的可以所以操作,标号i的根子在棍子上时,只有它标号比它小的换都不在棍子上,才能把标号为i+1的环,放在棍 ...

  9. ACM学习历程——ZOJ 3822 Domination (2014牡丹江区域赛 D题)(概率,数学递推)

    Description Edward is the headmaster of Marjar University. He is enthusiastic about chess and often ...

随机推荐

  1. DHV 平常语言对话 一次聚会离场

    一次聚会离场 一次聚会离场,如果顺路要计划好A女生 和B女生 或者C女闺密一起回去,然后再自己回去 如果别人说:好男人, 自己一定要谦虚说: 哪里,好男人一般都是备胎. 到家了要说: 不是说: 我:我 ...

  2. Mybatis学习(叁)

    一.resultMap[结果映射  关系映射] 作用:当查询的数据与数据库中的数据不一致(表中字段和实体的属性不一样),通过resultMap进行一次映射. 可以使用简单的做法:(取别名) 二.多表查 ...

  3. RESEACH PAPER

      个,proquest的username和password赫然在目,别急,再看第4个结 果"HB Thompson Subscription Online Databases", ...

  4. CentOS 7.x安装配置

    简述 VMware可以创建多个虚拟机,每个虚拟机上都可以安装各种类型的操作系统.安装方法也有很多种.下面,主要以ISO镜像安装为例,介绍CentOS 7.x的安装过程及相关的参数设置. 简述 创建虚拟 ...

  5. Qt之Meta-Object系统

    简述 Qt的元对象系统(Meta-Object System)提供了信号与槽机制,可用于对象间通信.运行时类别信息和动态属性系统. 元对象系统基于三个方面: QObject类:为objects提供了一 ...

  6. md5算法原理一窥(其一)

    首先,需要了解的事,md5并不是传说中的加密算法,只是一种散列算法.其加密的算法并不是我们说所的那样固定不变,只是一种映射的关系. 所以解密MD5没有现成的算法,只能用穷举法,把可能出现的明文,用MD ...

  7. 【转载】如何在德州仪器网站查找和下载PCB封装

    德州仪器的网站做得相当不错,查找IC资料和下载IC封装样样给力.那么如何在TI网站上能够快速查找到自已需要的PCB封装呢?下面我来告诉你. 1.       在浏览器中输入网址http://weben ...

  8. Javascript面向对象编程:构造函数的继承

    今天要介绍的是,对象之间的"继承"的五种方法. 比如,现在有一个"动物"对象的构造函数. function Animal(){ this.species = & ...

  9. ios基础篇(七)——UISwich、UISlider、UIProgressView的用法总结

    一.UISlider UIslider滑块控件在IOS开发中会常用到,可用于调节音量,字体大小等UI方面的交互:UISlider实例提供一个控件,让用户通过左右拖动一个滑块(可称其为“缩略图”)来选择 ...

  10. mysql 索引长度限制

    MyISAM存储引擎引键的长度综合不能超过1000字节 InnoDB单列索引长度不能超过767bytes,联合索引还有一个限制是3072