题目链接:http://codeforces.com/problemset/problem/711/C

给你n棵树,m种颜色,k是指定最后的完美值。接下来一行n个数 表示1~n树原本的颜色,0的话就是没颜色(一定要上色),非0就是有颜色(不能上色)。

接下来n行 每行m个数,第i行第j个数表示 编号为i的树上第j种颜色的代价为a[i][j]。

问你最后要使完美值为k的上色代价最小为多少,要是不可能的话就为-1。

我们来考虑dp,每个树和前一个树有联系。

dp[i][j][x] 表示第i棵树 完美值为j 上第x种颜色的最小代价。

如果前一个树颜色和此树颜色相同,dp[i - 1][j][x]  --> dp[i][j][x]

否则,dp[i - 1][j][y] --> dp[i][j + 1][x]

 //#pragma comment(linker, "/STACK:102400000, 102400000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
typedef __int64 LL;
typedef pair <int, int> P;
const int N = 1e2 + ;
LL dp[N][N][N], a[N][N], val[N], INF = 1e16;
//dp[i][k][j] i棵树 k完美值 j颜色 int main()
{
LL n, k, m;
scanf("%lld %lld %lld", &n, &m, &k);
for(LL i = ; i <= n; ++i)
scanf("%lld", val + i);
for(LL i = ; i <= n; ++i) {
for(LL j = ; j <= m; ++j) {
scanf("%lld", &a[i][j]);
}
}
for(int i = ; i <= n; ++i) {
for(int j = ; j <= k; ++j) {
for(int x = ; x <= m; ++x) {
dp[i][j][x] = INF;
}
}
}
if(val[]) { //已有颜色
dp[][][val[]] = ;
} else {
for(LL i = ; i <= m; ++i) {
dp[][][i] = a[][i];
}
}
for(LL i = ; i <= n; ++i) {
for(LL j = ; j <= k; ++j) {
for(LL x = ; x <= m; ++x) {
if(dp[i - ][j][x] == INF)
continue;
if(val[i]) {
if(val[i] == x) { //与前一个颜色一致
dp[i][j][val[i]] = min(dp[i - ][j][x], dp[i][j][val[i]]);
} else {
dp[i][j + ][val[i]] = min(dp[i - ][j][x], dp[i][j + ][val[i]]);
}
} else {
for(LL y = ; y <= m; ++y) {
if(y == x) {
dp[i][j][y] = min(dp[i][j][y], dp[i - ][j][x] + a[i][y]);
} else {
dp[i][j + ][y] = min(dp[i][j + ][y], dp[i - ][j][x] + a[i][y]);
}
}
}
}
}
}
LL res = INF;
for(LL i = ; i <= m; ++i) {
if(dp[n][k][i] == -)
continue;
res = min(res, dp[n][k][i]);
}
printf("%lld\n", res == (LL)INF ? -: res);
return ;
}

Codeforces 711 C. Coloring Trees (dp)的更多相关文章

  1. CodeForces #369 C. Coloring Trees DP

    题目链接:C. Coloring Trees 题意:给出n棵树的颜色,有些树被染了,有些没有.现在让你把没被染色的树染色.使得beauty = k.问,最少使用的颜料是多少.   K:连续的颜色为一组 ...

  2. codeforces 711C C. Coloring Trees(dp)

    题目链接: C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  3. Codeforces 677C. Coloring Trees dp

    C. Coloring Trees time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...

  4. Codeforces Round #369 (Div. 2) C. Coloring Trees DP

    C. Coloring Trees   ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...

  5. C. Coloring Trees DP

    传送门:http://codeforces.com/problemset/problem/711/C 题目: C. Coloring Trees time limit per test 2 secon ...

  6. Codeforces 1027E Inverse Coloring 【DP】

    Codeforces 1027E Inverse Coloring 题目链接 #include<bits/stdc++.h> using namespace std; #define N ...

  7. CodeForces 711C Coloring Trees (DP)

    题意:给定n棵树,其中有一些已经涂了颜色,然后让你把没有涂色的树涂色使得所有的树能够恰好分成k组,让你求最少的花费是多少. 析:这是一个DP题,dp[i][j][k]表示第 i 棵树涂第 j 种颜色恰 ...

  8. Codeforces 596D Wilbur and Trees dp (看题解)

    一直在考虑, 每一段的贡献, 没想到这个东西能直接dp..因为所有的h都是一样的. #include<bits/stdc++.h> #define LL long long #define ...

  9. 【Codeforces 711C】Coloring Trees

    [链接] 我是链接,点我呀:) [题意] 连续相同的数字分为一段 你可以改变其中0为1~m中的某个数字(改变成不同数字需要不同花费) 问你最后如果要求分成恰好k段的话,最少需要多少花费 [题解] dp ...

随机推荐

  1. sql DROP 和DELETE、TRUNCATE用法

    DROP:删除数据库已存在的表DROP TABLE tbname DELETE:删除记录delete from tbname truncate:清空表,重置索引truncate table tbnam ...

  2. 自己实现字符串操作函数strlen(),strcat(),strcpy(),strcmp()

    1.strlen()函数是求解字符串的有效长度的 1)非递归实现 size_t my_strlen(const char *str) { assert(str != NULL);  //断言,保证指针 ...

  3. Oracle安装错误ora-00922(zhuan)

    Oracle安装错误ora-00922(缺少或无效选项) (2012-03-19 10:49:27) 转载▼ 标签: 杂谈   安装Oracle 11g R2的过程中,在新建数据库实例时出现了该错误, ...

  4. BZOJ 1452 Count

    长知识啦..二维BIT. #include<iostream> #include<cstdio> #include<cstring> #include<alg ...

  5. open行情

    日k线 只能取8年 1分钟K线 只能取五天 前复权K线出现负数的股价 后复权K线会出现上千的股价

  6. Windows Store APP- C# to get IP Address

    using Windows.Networking.Connectivity; public String GetIPString() { String ipString = String.Empty; ...

  7. RabbitMQ链接不上异常

    链接代码 项目启动报的异常 本地main方法链接报的异常 网上查询原因 问题说明及解决方案: 网上原因很多,最终原因都是连接不到数据库造成的. 1.查看防火墙 2.tomcat端口是否屏蔽 3.查看连 ...

  8. Android Studio 小技巧合集

    本文翻译自 Android Studio Tips by Philippe Breault,一共收集了62个 Android Studio 使用小技巧和快捷键. 根据这些小技巧的使用场景,本文将这62 ...

  9. android 横竖屏限制如何配置

    在开发android的应用中,有时候需要限制横竖屏切换.只需要在AndroidManifest.xml文件中加入android:screenOrientation属性限制. ndroid:screen ...

  10. IPC_共享内存

    在IPC(InterProcess Communication)的通信模式下,不管是使用消息队列还是共享内存,甚至是信号量,每个IPC的对象(object)都有唯一的名字,称为“键”(key).通过“ ...