My birthday is coming up and traditionally I’m serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my

friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This

piece can be one whole pie though. My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of

them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the

party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size. What is the largest possible piece size all of us can get?

All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.

Input

One line with a positive integer: the number of test cases. Then for each test case: • One line with two integers N and F with 1 ≤ N, F ≤ 10000: the number

of pies and the number of friends. • One line with N integers ri with 1 ≤ ri ≤ 10000: the radii of the pies.

Output

For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V . The answer should be

given as a oating point number with an absolute error of at most 10−3.

Sample Input

3 3 3 4 3 3 1 24 5 10 5 1 4 2 3 4 5 6 5 4 2

Sample Output

25.1327 3.1416 50.2655

题目大意:我有个生日宴会邀请了f个朋友,宴会有n块饼,饼的高度都为1,分别给出n块饼的面积,要使得我和f个朋友每个人所分得的饼的体积都一样,

求每人分得的最大体积。

注意:每个人只能得到一块饼且不能由两块或两块以上不同的饼组合而成。

分析:首先用求出各个饼的体积,再将他们相加求出总体积(V),用V除以总人数(f+1)每人就可以得到最大的饼,由于每人不能由两块及两块以上不同的饼组合而成,

所以需要将V/(f+1)二分,直到找到最大且最合适的值。

代码如下:

#include <iostream>
#include <cstdio>
#include <cmath>
double pi=acos(-1);
const int maxn=10005;
double a[maxn];
int n,f;
using namespace std;
bool test(double x)
{
int num=0;
for(int i=0;i<n;i++)
{
num+=int(a[i]/x);
}
if(num>=f)
return true;
else
return false;
}
int main()
{
int t,r;
double max,v,left,right,mid;
scanf("%d",&t);
while(t--)
{ scanf("%d%d",&n,&f);
f=f+1;
for(int i=0;i<n;i++)
{
scanf("%d",&r);
a[i]=pi*r*r;
v+=a[i];
}
max=v/f;
left=0.0;
right=max;
while((right-left)>1e-6)
{
mid=(right+left)/2;
if(test(mid))
left=mid;
else
right=mid;
}
printf("%.4f\n",mid); }
}

Program C--二分的更多相关文章

  1. [bzoj1901][zoj2112][Dynamic Rankings] (整体二分+树状数组 or 动态开点线段树 or 主席树)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...

  2. Codeforces Round #379 (Div. 2) A B C D 水 二分 模拟

    A. Anton and Danik time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  3. 【BZOJ-2527】Meteors 整体二分 + 树状数组

    2527: [Poi2011]Meteors Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 831  Solved: 306[Submit][Stat ...

  4. HDU 4768 Flyer(二分)

    题目链接: 传送门 Flyer Time Limit: 1000MS     Memory Limit: 32768 K Description The new semester begins! Di ...

  5. Flyer(二分 HDU4768)

    Flyer Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submiss ...

  6. [ACM] poj 1064 Cable master (二分查找)

    Cable master Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21071   Accepted: 4542 Des ...

  7. [ACM_图论] Sorting Slides(挑选幻灯片,二分匹配,中等)

    Description Professor Clumsey is going to give an important talk this afternoon. Unfortunately, he i ...

  8. [ACM_图论] The Perfect Stall 完美的牛栏(匈牙利算法、最大二分匹配)

    描述 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星期,农夫约翰随便地让奶牛们进入牛栏,但是问题很快地显露出来:每头奶牛都只愿意在她们 ...

  9. POj3104 Drying(二分)

    Drying Time Limit: 2000MS Memory Limit: 65536K Description It is very hard to wash and especially to ...

  10. POJ 3903:Stock Exchange(裸LIS + 二分优化)

    http://poj.org/problem?id=3903 Stock Exchange Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

随机推荐

  1. Bootstrap列表

    一.HTML的列表 在HTML文档中,列表结构主要有三种:有序列表.无序列表和定义列表.具体使用的标签说明如下: 1.无序列表 <ul> <li>…</li> &l ...

  2. refreshLayout 和 滑动控件的冲突解决

    listView.setOnScrollListener(new OnScrollListener() {           @Override     public void onScrollSt ...

  3. java 导入包(误区)

    java的导入包语句的作用仅仅是简化书写,很多时候我们都误以为是将一个类导入到内存中. 如果是这样,那么运行的效率会很慢.

  4. java final

    final:(最终的)看不懂时有必要分析内存画图,不同方法的局部变量是相互独立的额不要被所起的名所困扰. 1)每个方法运行时jvm,都会为其开辟一片内存空间.内存空间是属于这个方法的, 同时,方法中的 ...

  5. Lecture Notes: Macros

    原论文链接失效,特在这里保存一份 http://www.apl.jhu.edu/~hall/Lisp-Notes/Macros.html Lisp functions take Lisp values ...

  6. linux笔记:linux常用命令-文件搜索命令

    文件搜索命令:find(文件搜索) 一些示例: 注意:在以文件名为条件进行搜索时,支持通配符. 多条件搜索,以及直接对搜索到的文件进行操作: 文件搜索命令:locate(在文件资料库中查找文件) 文件 ...

  7. RESEACH PAPER

      个,proquest的username和password赫然在目,别急,再看第4个结 果"HB Thompson Subscription Online Databases", ...

  8. jmeter 监听的介绍

    一个侦听器是一个组件,显示的结果 样本. 结果可以显示在一个树,表格,图表或简单地写入到日志中 文件. 查看的内容反应任何给定的采样器,添加的监听器” 视图 结果树 ”或“ 视图的结果表 一个测试计划 ...

  9. 小程序---根据数据库反向生成java文件

    工作中写entry太繁琐,写了一个小程序反向生成.从而大大减少了工作量 import java.io.File; import java.io.FileWriter; import java.io.I ...

  10. C#多态问题

    为什么对这个感觉趣呢.因为以前写过两篇关于这个多态和重载混合起来很乱的调用情况分析,自从哪以后,我自认为随便乱写一些继承多态的代码都应该难不到我.但是今天看到一段代码有一个地方计算错误了,所以有必要写 ...